在当今 AI 技术飞速发展的时代,AI 大模型的应用开发成为了行业焦点。
然而,目前大模型官方主要还是以对话形式呈现,这在一定程度上限制了其应用的广度和深度。
本文将深入探讨基于 AI 大模型做应用开发时,聊天对话形式的局限以及突破方向,包括基于 RAG 的 AI 应用以及原有软件系统 AI 数智化改造的多种形式。
一、大模型官方对话形式的现状
目前,像 GPT 系列、DeepSeek、Kimi、千问等主流大模型,主要以聊天对话的形式与用户交互。
这种对话形式在很多场景下确实发挥了巨大作用,例如智能客服、简单的问答咨询等。
用户可以通过自然语言与模型进行交流,获取信息、解决问题。但随着行业对 AI 应用需求的不断深入,这种单一的对话形式逐渐暴露出一些局限性:
- 交互效率较低,用户需要通过多轮对话才能获取所需信息
- 缺乏结构化的信息展示,难以进行复杂任务处理
- 用户体验割裂,难以与现有业务系统无缝集成
- 对话上下文管理复杂,容易造成信息断层
二、基于 RAG 的 AI 应用突破
RAG(Retrieval-Augmented Generation,检索增强生成)为 AI 大模型的应用开发带来了新的突破方向。在传统的对话形式中,模型主要依赖自身的AI知识库来生成回答。
而基于 RAG 的应用,通过结合检索技术,可以在外部知识源中查找相关信息,然后将检索到的内容与模型生成的结果相结合,从而提供更准确、更全面的答案。
例如在医疗领域,基于 RAG 的 AI 应用可以检索医学文献数据库,结合模型的自然语言生成能力,为医生提供更精准的诊断建议和治疗方案参考。这不仅提高了信息的可靠性,还能针对特定领域的专业问题给出更有深度的回答,突破了单纯对话形式在知识深度和广度上的限制。
三、原有软件系统 AI 数智化改造的多种形式
(一)副驾驶形式
将 AI 大模型以副驾驶的形式融入原有软件系统,是一种创新的应用开发方式。
在这种形式下,AI 模型就像一个智能助手,辅助用户进行操作和决策。
例如在办公软件中,AI 副驾驶可以根据用户正在编辑的文档内容,提供写作建议、语法检查、智能排版等功能。
它不会直接改变原有的软件操作流程,而是在旁边默默地提供帮助,用户可以根据自己的需求选择是否采纳建议。
这种形式既保留了原有软件系统的熟悉感,又通过 AI 的智能能力提升了用户体验和工作效率。
(二)嵌入到业务流程
将 AI 大模型嵌入到业务流程中,能够实现更深度的自动化和智能化。
以企业的供应链管理系统为例,AI 模型可以嵌入到采购流程中,通过对市场数据、供应商信息等的分析,自动生成采购计划、预测价格波动、推荐合适的供应商。
在设备检测管理平台里通过AI上设备参数快速检测当前健康状态。
这种嵌入式应用开发方式,使 AI 成为业务流程的核心驱动力,突破了对话形式的局限,直接参与到企业的核心业务决策和执行中,为企业带来更高的价值。
(三)独立 AI 模块工具
开发独立的 AI 模块工具,与原有软件系统进行集成,也是一种有效的突破方式。
这些独立的 AI 模块可以针对特定的功能或任务进行优化,例如智能图像识别模块、自然语言处理模块等。
以血常规报告分析为例,通过智能比对和分析,判断各项指标是否正常,并通过检查项的检测数值挖掘潜在的健康问题。 从贫血、血液系统疾病、炎症和免疫反应、出血或凝血问题等多个维度,总结分析出一份血常规健康报告,为医生提供高效辅助诊断,帮助患者快速了解自身健康状况,提升医疗服务效率与质量。
这些模块通过标准化的接口与原有软件系统进行交互,用户可以在软件中方便地调用这些 AI 功能,无需通过对话形式来获取服务,大大提高了操作的便捷性和效率。
四、总结
基于 AI 大模型的应用开发,虽然目前对话形式仍然是主流,但其局限性也逐渐显现。
通过基于 RAG 的应用开发以及对原有软件系统进行 AI 数智化改造的多种形式,我们可以突破对话形式的限制,将 AI 大模型的能力更广泛、更深入地应用到各个行业和领域中。
未来,随着技术的不断发展,相信会有更多创新的应用开发形式出现,为行业带来更多的机遇和变革。