我的报错出现在for i, data in enumerate(salobj_dataloader):中。
result type Double can't be cast to the desired output type Byte
最后通过在环境中的collate中打印batch中的数据类型和train计算loss之前的数据类型发现,batch中的data是float64,loss计算前都转成了float32.虽然train中有转换类型的代码,但是在迭代__getitem__数据的时候没有类型控制。
这个我先后试过torch版本控制,我这边解决不了。有人好像可以通过切换torch版本解决。
【解决方案】:
修改U-2-Net中的data_loader.py 的ToTensor类的__call__函数返回值如下所示:
# 这是我报另一个错误修改的,一搜就搜到了。
# return {
# 'imidx':torch.from_numpy(imidx),
# 'image': torch.from_numpy(tmpImg),
# 'label': torch.from_numpy(tmpLbl)
# }
# 这是最终加上类型控制之后的结果
imidx = torch.from_numpy(np.ascontiguousarray(imidx)).int()
image = torch.from_numpy(np.ascontiguousarray(tmpImg)).float()
label = torch.from_numpy(np.ascontiguousarray(tmpLbl)).float()
return {'imidx':imidx, 'image': image, 'label': label}