剑客决斗

描述
在路易十三和红衣主教黎塞留当权的时代,发生了一场决斗。n个人站成一个圈,依次抽签。抽中的人和他右边的人决斗,负者出圈。这场决斗的最终结果关键取决于决斗的顺序。现书籍任意两决斗中谁能胜出的信息,但“A赢了B”这种关系没有传递性。例如,A比B强,B比C强,C比A强。如果A和B先决斗,C最终会赢,但如果B和C决斗在先,则最后A会赢。显然,他们三人中的第一场决斗直接影响最终结果。


假设现在n个人围成一个圈,按顺序编上编号1~n。一共进行n-1场决斗。第一场,其中一人(设i号)和他右边的人(即i+1号,若i=n,其右边人则为1号)。负者被淘汰出圈外,由他旁边的人补上他的位置。已知n个人之间的强弱关系(即任意两个人之间输赢关系)。如果存在一种抽签方式使第k个人可能胜出,则我们说第k人有可能胜出,我们的任务是根据n个人的强弱关系,判断可能胜出的人数。
 
输入
第一行是一个整数N(1<=N<=20)表示测试数据的组数。
第二行是一个整数n表示决斗的总人数。(2<=n<=500)
随后的n行是一个n行n列的矩阵,矩阵中的第i行第j列如果为1表示第i个人与第j个人决斗时第i个人会胜出,为0则表示第i个人与第j个人决斗时第i个人会失败。
输出
对于每组测试数据,输出可能胜出的人数,每组输出占一行
样例输入
1
3
0 1 0
0 0 1
1 0 0
样例输出

3

编号为i的人能从所有人中胜出,必要条件是他能与自己相遇,即把环看成链,i点拆成两个在这条链的两端,中间的人全部被淘汰出局,i保持不败。这样,在连续几个人的链中,只须考虑头尾两个人能否胜利会师,中间的则不予考虑,从而少了一维状态表示量。设meet[i,j]记录i和j能否相遇,能相遇则为true,否则为false。状态转移方程为

if(meet[i][t] && meet[t][j]) && (fight[i][t] || fight[j][t]=true) && i < t < j)
     meet[i][j] = true;
else
     meet[i][j] = false;

int fight[100][100];
bool meet[100][100];

void KnightFight(int n){
    for(int i=1 ; i<n ; i++){
        for(int start=0 ; start<n ; start++){
            int end=(start+i+1)%n;
            if(meet[start][end])
                continue;
            for(int t=(start+1)%n ; t!=end ; t++,t%n){
                if(meet[start][t] && meet[t][end] && (fight[start][t] || fight[end][t])){
                    meet[start][end]=true;
                    break;
                }
            }
        }
    }
    int cnt=0;
    for(int i=0 ; i<n ; i++){
        if(meet[i][j])
            cnt++;
    }
    return cnt;
}


展开阅读全文

没有更多推荐了,返回首页