Coursera Machine Learning 第八周 quiz Unsupervised Learning



1
point
1. 

For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.

答案AB

Given a database of information about your users, automatically group them into different market segments.

Given sales data from a large number of products in a supermarket, figure out which products tend to form coherent groups (say are frequently purchased together) and thus should be put on the same shelf.

Given historical weather records, predict the amount of rainfall tomorrow (this would be a real-valued output)

Given sales data from a large number of products in a supermarket, estimate future sales for each of these products.

1
point
2. 

Suppose we have three cluster centroids  μ1=[12] μ2=[30]  and  μ3=[42] . Furthermore, we have a training example  x(i)=[21] . After a cluster assignment step, what will  c(i)  be?

答案C

c(i)=3

c(i)  is not assigned

c(i)=2

c(i)=1

1
point
3. 

K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop. Which two?

答案AD

The cluster assignment step, where the parameters  c(i)  are updated.

Test on the cross-validation set.

Randomly initialize the cluster centroids.

Move the cluster centroids, where the centroids  μk  are updated.

1
point
4. 

Suppose you have an unlabeled dataset  {x(1),,x(m)} . You run K-means with 50 different random

initializations, and obtain 50 different clusterings of the

data. What is the recommended way for choosing which one of

these 50 clusterings to use?

答案A

For each of the clusterings, compute  1mmi=1||x(i)μc(i)||2 , and pick the one that minimizes this.

Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution.

The only way to do so is if we also have labels  y(i)  for our data.

The answer is ambiguous, and there is no good way of choosing.

1
point
5. 

Which of the following statements are true? Select all that apply.

案BC

Since K-Means is an unsupervised learning algorithm, it cannot overfit the data, and thus it is always better to have as large a number of clusters as is computationally feasible.

For some datasets, the "right" or "correct" value of K (the number of clusters) can be ambiguous, and hard even for a human expert looking carefully at the data to decide.

If we are worried about K-means getting stuck in bad local optima, one way to ameliorate (reduce) this problem is if we try using multiple random initializations.

The standard way of initializing K-means is setting  μ1==μk  to be equal to a vector of zeros.

Coursera机器学习是由斯坦福大学教授Andrew Ng主讲的一门在线课程,旨在向学习者介绍机器学习的基本概念、算法和应用。该课程涵盖了监督学习、无监督学习、深度学习等多个方面,通过理论讲解和实践编程作业,帮助学习者掌握机器学习的基本原理和实践技能。该课程是Coursera平台上最受欢迎的课程之一,也是机器学习领域入门的重要资源之一。 ### 回答2: Coursera机器学习是由斯坦福大学Andrew Ng教授设计并教授的在线课程。这门课程被认为是公认的机器学习入门教材之一,也是Coursera平台最受欢迎的课程之一。 这门课程涵盖了机器学习领域中最基础的知识和技术,包括监督学习、无监督学习以及神经网络等。学生可以通过该课程了解到如何采集和处理数据、如何训练模型、如何评估模型的性能等。此外,课程还涉及到机器学习中一些实用的技术,如正则化、梯度下降等。 该课程受到了全球范围内的认可和青睐,许多学生、工程师、数据科学家等都受益于该课程。由于该课程的知识点全面、深入浅出、容易理解和学习,在业内和学术界都广受赞誉,拥有较高的知名度和价值。 总之,Coursera机器学习是一门非常好的课程,对于那些对机器学习感兴趣的人来说,它是一个不可错过的机会。课程教材内容丰富、难度适中,且教学相对轻松愉悦,难怪在学习资源上产生了广泛的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值