309. Best Time to Buy and Sell Stock with Cooldown
题目描述:Say you have an array for which the i*th element is the price of a given stock on day *i.
Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:
- You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
- After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)
Example:
prices = [1, 2, 3, 0, 2] maxProfit = 3 transactions = [buy, sell, cooldown, buy, sell]
题目大意:买卖股票的变种,在股票之后需要一个冷冻期
思路:dp
buy[i]表示在第i天之前最后一个操作是买,此时的最大收益。
sell[i]表示在第i天之前最后一个操作是卖,此时的最大收益。
rest[i]表示在第i天之前最后一个操作是冷冻期,此时的最大收益。
我们写出递推式为:
buy[i] = max(rest[i-1] - price, buy[i-1]) sell[i] = max(buy[i-1] + price, sell[i-1]) rest[i] = max(sell[i-1], buy[i-1], rest[i-1])
上述递推式很好的表示了在买之前有冷冻期,买之前要卖掉之前的股票。一个小技巧是如何保证[buy, rest, buy]的情况不会出现,这是由于buy[i] <= rest[i], 即rest[i] = max(sell[i-1], rest[i-1]),这保证了[buy, rest, buy]不会出现。
另外,由于冷冻期的存在,我们可以得出rest[i] = sell[i-1],这样,我们可以将上面三个递推式精简到两个:
buy[i] = max(sell[i-2] - price, buy[i-1]) sell[i] = max(buy[i-1] + price, sell[i-1])
我们还可以做进一步优化,由于i只依赖于i-1和i-2,所以我们可以在O(1)的空间复杂度完成算法。
代码
package DP; /** * @author OovEver * 2018/1/7 20:23 */ public class LeetCode309 { public int maxProfit(int[] prices) { if (prices == null || prices.length == 0) { return 0; } int buy = Integer.MIN_VALUE; int prebuy = 0; int sell = 0; int presell = 0; for (int price : prices) { prebuy = buy; buy = Math.max(presell - price, prebuy); presell = sell; sell = Math.max(presell, prebuy + price); } return sell; } }