USCAO 2.3.2


设dp[i,j]表示用i个点组成深度最多为j的二叉树的方法数,则:
dp[i,j]=∑(dp[k,j-1]×dp[i-1-k,j-1])(k∈{1..i-2})
边界条件:dp[1,i]=1
要求的是深度恰好为K的方法数S,则S=dp[n,k]-dp[n,k-1]
但需要注意的是,如果每次都取模,最后可能会有dp[n,k]<dp[n,k-1],所以可以用S=(dp[n,k]-dp[n,k-1]+v) mod v

#include<stdio.h>
#include<iostream>
using namespace std;
int dp[201][101];
int main()
{
 freopen("nocows.in","r",stdin);
 freopen("nocows.out","w",stdout);
 int N,K;
 cin>>N>>K;
 
 for(int i=0;i<=K;i++)
  dp[1][i]=1;
 for(int i=3;i<=N;i++)
 {
  for(int j=2;j<=K;j++)
  {
   for(int k=1;k<=i-2;k++)
   {
    dp[i][j]+=dp[k][j-1]*dp[i-k-1][j-1];
    dp[i][j]=(dp[i][j]+9901)%9901;
   }
  }
 }
 int ans=dp[N][K]-dp[N][K-1];
 if(ans<0)
  ans+=9901;
 cout<<ans<<endl;
 return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值