设dp[i,j]表示用i个点组成深度最多为j的二叉树的方法数,则:
dp[i,j]=∑(dp[k,j-1]×dp[i-1-k,j-1])(k∈{1..i-2})
边界条件:dp[1,i]=1
要求的是深度恰好为K的方法数S,则S=dp[n,k]-dp[n,k-1]
但需要注意的是,如果每次都取模,最后可能会有dp[n,k]<dp[n,k-1],所以可以用S=(dp[n,k]-dp[n,k-1]+v) mod v
#include<stdio.h>
#include<iostream>
using namespace std;
int dp[201][101];
int main()
{
freopen("nocows.in","r",stdin);
freopen("nocows.out","w",stdout);
int N,K;
cin>>N>>K;
for(int i=0;i<=K;i++)
dp[1][i]=1;
for(int i=3;i<=N;i++)
{
for(int j=2;j<=K;j++)
{
for(int k=1;k<=i-2;k++)
{
dp[i][j]+=dp[k][j-1]*dp[i-k-1][j-1];
dp[i][j]=(dp[i][j]+9901)%9901;
}
}
}
int ans=dp[N][K]-dp[N][K-1];
if(ans<0)
ans+=9901;
cout<<ans<<endl;
return 0;
}