Android 排序算法

3 篇文章 0 订阅

冒泡排序 选择排序 插入排序 是简单排序
快速排序 希尔排序是高级排序

一、冒泡排序

冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
冒泡排序的算法实现如下:【排序后,数组从小到大排列】
时间复杂度:比较和交换都是N^2成正比 时间复杂度为O(N^2)

   /**
     * 冒泡排序
     * 比较相邻的元素。如果第一个比第二个大,就交换他们两个。  
     * 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。  
     * 针对所有的元素重复以上的步骤,除了最后一个。
     * 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。 
     * @param numbers 需要排序的整型数组
     */
    public static void bubbleSort(int[] numbers) {
        int temp = 0;
        int size = numbers.length;
        for (int i = 0; i < size - 1; i++) {
            for (int j = 0; j < size - 1 - i; j++) {
                if (numbers[j] > numbers[j + 1])  //交换两数位置
                {
                    temp = numbers[j];
                    numbers[j] = numbers[j + 1];
                    numbers[j + 1] = temp;
                }
            }
        }
    }
二、快速排序

快速排序的基本思想:

通过一趟排序将待排序记录分割成独立的两部分,其中一部分记录的关键字均比另一部分关键字小,则分别对这两部分继续进行排序,直到整个序列有序。

方法: 把整个序列看做一个数组,把第零个位置看做中轴,和最后一个比,如果比它小交换,比它大不做任何处理;交换了以后再和小的那端比,比它小不交换,比他大交换。这样循环往复,一趟排序完成,左边就是比中轴小的,右边就是比中轴大的,然后再用分治法,分别对这两个独立的数组进行排序。

快速排序之所以比较快,是因为相比冒泡排序,每次的交换都是跳跃式的,每次设置一个基准值,将小于基准值的都交换到左边,大于基准值的都交换到右边,这样不会像冒泡一样每次都只交换相邻的两个数,因此比较和交换的此数都变少了,速度自然更高。当然,也有可能出现最坏的情况,就是仍可能相邻的两个数进行交换。
优化:在有序或者逆序数组排序时候效率是O(N^2),为了避免采用取头,尾,中间,三个数的中间值做为其实基数,并对这三个进行排序,提高了内部循环的执行效率

快速排序基于分治思想,它的时间平均复杂度很容易计算得到为O(N*logN)

代码实现:

 /**
     * 快排核心算法,递归实现
     *
     * @param array
     * @param left
     * @param right
     */
    public void quickSort(int[] array, int left, int right) {
        if (left > right) {
            return;
        }
        // base中存放基准数
        int base = array[left];
        int i = left, j = right;
        while (i != j) {
            // 顺序很重要,先从右边开始往左找,直到找到比base值小的数
            while (array[j] >= base && i < j) {
                j--;
            }

            // 再从左往右边找,直到找到比base值大的数
            while (array[i] <= base && i < j) {
                i++;
            }

            // 上面的循环结束表示找到了位置或者(i>=j)了,交换两个数在数组中的位置
            if (i < j) {
                int tmp = array[i];
                array[i] = array[j];
                array[j] = tmp;
            }
        }

        // 将基准数放到中间的位置(基准数归位)
        array[left] = array[i];
        array[i] = base;
        // 递归,继续向基准的左右两边执行和上面同样的操作
        // i的索引处为上面已确定好的基准值的位置,无需再处理
        sort(array, left, i - 1);
        sort(array, i + 1, right);

    }

三、选择排序

基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

和冒泡排序比较了相同次数N*(N-1)/2,交换次数为N,时间复杂度为O(N^2) 比冒泡效率高,

/**
     * 选择排序算法
     * 在未排序序列中找到最小元素,存放到排序序列的起始位置  
     * 再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。 
     * 以此类推,直到所有元素均排序完毕。 
     * @param numbers
     */
     //选择排序
   public void selectSort(int arr[]) {

        int min;

        for (int i = 0; i < arr.length-1 ; i++) {//控制趟数
            min=i;
            for (int j = i+1 ; j < arr.length; j++) {//查找最小值
                if (arr[min]>arr[j]){
                    min=j;
                }
            }
         if (i!=min){
                int temp = arr[i];
                arr[i] = arr[min];
                arr[min] = temp; 
            }
        for (int num : arr) {
            Log.e("selectSort", num + " ");
        }
    }

四、插入排序

基本思想:每步将一个待排序的记录,按其顺序码大小插入到前面已经排序的字序列的合适位置(从后向前找到合适位置后),直到全部插入排序完为止。
比冒泡块一倍 比选择略快 时间负责度O(N^2) 对于顺序数据 执行比冒泡块 逆序则慢
数据量小的情况下 插入排序比冒泡排序和选择排序好 数据量大的情况下 用快速排序

  /**  
     * 插入排序
     * 从第一个元素开始,该元素可以认为已经被排序
     * 取出下一个元素,在已经排序的元素序列中从后向前扫描 
     * 如果该元素(已排序)大于新元素,将该元素移到下一位置  
     * 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置  
     * 将新元素插入到该位置中  
     * 重复步骤2  
     * @param numbers  待排序数组
     */  
    public static void insertSort(int[] numbers)
    {
    int size = numbers.length;
    int temp = 0 ;
    int j =  0;
    
    for(int i = 1 ; i < size ; i++)
    {
        temp = numbers[i];
        //假如temp比前面的值小,则将前面的值后移
        for(j = i ; j > 0 && temp < numbers[j-1] ; j --)
        {
        numbers[j] = numbers[j-1];
        }
        numbers[j] = temp;
    }
    }
五 归并排序
 /**
     * 文件描述: 归并排序
     * 分而治之(divide - conquer);每个递归过程涉及三个步骤
     * 第一, 分解: 把待排序的 n 个元素的序列分解成两个子序列, 每个子序列包括 n/2 个元素.
     * 第二, 治理: 对每个子序列分别调用归并排序MergeSort, 进行递归操作
     * 第三, 合并: 合并两个排好序的子序列,生成排序结果.
     */
        public static int[] sort(int[] a, int low, int high) {
            int mid = (low + high) / 2;
            if (low < high) {
                sort(a, low, mid);
                sort(a, mid + 1, high);
                //左右归并
                merge(a, low, mid, high);
            }
            return a;
        }

        public static void merge(int[] a, int low, int mid, int high) {
            int[] temp = new int[high - low + 1];
            int i = low;
            int j = mid + 1;
            int k = 0;
            // 把较小的数先移到新数组中
            while (i <= mid && j <= high) {
                if (a[i] < a[j]) {
                    temp[k++] = a[i++];
                } else {
                    temp[k++] = a[j++];
                }
            }
            // 把左边剩余的数移入数组
            while (i <= mid) {
                temp[k++] = a[i++];
            }
            // 把右边边剩余的数移入数组
            while (j <= high) {
                temp[k++] = a[j++];
            }
            // 把新数组中的数覆盖nums数组
            for (int x = 0; x < temp.length; x++) {
                a[x + low] = temp[x];
            }
        }

时间复杂度 O(N*logN) 在存储器中保持2个数组,占用空间大 在空间足够情况下 效率高

时间复杂度比较

算法的效率主要由以下两个复杂度来评估:

  • 时间复杂度:评估执行程序所需的时间。可以估算出程序对处理器的使用程度。 函数的执行次数
  • 空间复杂度:评估执行程序所需的存储空间。可以估算出程序对计算机内存的使用程度。

这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值