数据结构与算法实验题 7.1 M 商人的求救

问题描述:
A 国正面临着一场残酷的战争,城市被支持不同领导的两股势力占据,作为一个商人,M先生并不太关心政治,但是他知道局势很严重,他希望你能救他出去。M 先生说:“为了安全起见,我们的路线最多只能包含一条连接两股不同势力城市的道路”。M 先生想知道最快多久能到达目的地。
数据输入:
第一行 N(2<=N<=600),代表城市个数。第二行 M(0<=M<=10000),代表道路条数。接 下 来 M 行 每 行 三 个 数 A,B,T 。 代 表 一 条 从 城 市 A 到 城 市 B 的 路 需 要 耗 时
T(1<=T<=1500)。接下来一行 N 个数,这些数只会是 1 或者 2,第 i 个数字代表第 i 个城市属于第几股势力。
为了简化问题,我们假设开始时 M 先生在城市 1,目的地是城市 2,城市 1 属于第 1 股势力,城市 2 属于第 2 股势力。道路是双向的。数据保证没有重边。
结果输出:

输出最少需要的时间。如果无法到达则输出-1。

输入示例:
2
1
1 2 100
1 2

3
3
1 2 100
1 3 40
2 3 50
1 2 1

5
5
3 1 200
5 3 150
2 5 160
4 3 170
4 2 170
1 2 2 2 1

输出示例:

100

90

540




“我们的路线最多只能包含一条连接两股不同势力城市的道路”故只能找到到到达某个城市后再到城市2最短路径。

代码12/17上传

---------------

先找出城市1到势力1所有节点的最短路径,城市2到势力2所有点的最短路径。

然后枚举从1到某个城市,再从这个城市到2的最短路。

#include<cstdio>
const int MAXN=600+5;
const int INF=999999;
int force[MAXN];
int map[MAXN][MAXN];
int dis[3][MAXN],n;
void Dijkstra(int kind)
{
	int cur=kind;
	bool vis[MAXN]={0};
	vis[cur]=true;
	dis[kind][cur]=0;

	int i,j;
	for(i=1;i<=n;i++)
	{
		int mini=INF;
		for(j=1;j<=n;j++)
			if(map[cur][j]!=INF && force[j]==kind && map[cur][j] + dis[kind][cur] < dis[kind][j] )
				dis[kind][j]=map[cur][j] + dis[kind][cur];

		for(j=1;j<=n;j++)
			if(!vis[j] && dis[kind][j] < mini)
				mini=dis[kind][cur=j];

		vis[cur]=true;
	}
}

int main()
{
	int i,j;
	scanf("%d",&n);
	for(i=1;i<=n;i++)
		for(j=1;j<=n;j++)
			map[i][j]=INF;

	int m;
	scanf("%d",&m);

	for(i=0;i<m;i++)
	{
		int a,b,t;
		scanf("%d%d%d",&a,&b,&t);
		map[a][b]=map[b][a]=t;
	}

	for(i=1;i<=n;i++)
	{	
		scanf("%d",&force[i]);
		dis[1][i]=dis[2][i]=INF;
	}

	Dijkstra(1);
	Dijkstra(2);

	int ans=map[1][2],temp;
	for(j=1;j<=n;j++)
	{
		for(i=1;i<=n;i++)
		{
			if(force[i]!=force[j])
			{
				temp=map[i][j] + dis[1][j] + dis[2][i];
				if(temp<ans)
					ans=temp;
			}
		}
	}


	if(ans!=INF)
		printf("%d\n",ans);
	else
		printf("-1\n");

	return 0;
}


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值