UVA 10006 - Carmichael Numbers 快速幂

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=947

题目大意:

我们把对任意的1<x<n都有x^n=x mod n成立的合数n称为Carmichael number,给定一个整数n,判断它是不是Carmichael number。

思路:

编译器暂时改为Dev c++ 原来是VS2012 ,为了适应过几周的蓝桥杯编译环境。

直接枚举x用上快速幂即可。

还有要注意的是合数,素数就不是Carmichael number啦。


#include<cstdio>
#include<cstring>

typedef long long LL;
const int MAXN=65000+10;
bool primer[MAXN];
LL pow(LL x,LL n,LL mod) //x^n%mod
{
	LL res=1;
	while(n)
	{
		if( n & 1) res=res*x%mod;
		x=x*x%mod;
		n>>=1;
	}
	return res;
}
int main()
{
	memset(primer,0,sizeof(primer));
	for(int i=2;i*i<MAXN;i++)
	{
		if(!primer[i])
			for(int j=i;j*i<MAXN;j++)
				primer[i*j]=1;
	}
	int n;
	while(scanf("%d",&n),n)
	{
		bool ok=true;
		if(!primer[n])
			ok=false;
		
		if(ok)
			for(LL i=2;i<n;i++)
			{
				LL temp=pow(i,n,n);
				if(temp!=i)
					{
					ok=false;
					break;
				}
			}
		if(ok) 
			printf("The number %d is a Carmichael number.\n",n);
		else
			printf("%d is normal.\n",n);
	}
	return 0;
}


Carmichael定理是一个与费马小定理相关的定理,它给出了一种更准确地判断一个数是否为素数的方法。Carmichael定理指出,如果一个数n是素数,那么对于任意整数a,满足a与n互质,即gcd(a,n)=1,都有a^(λ(n))1 (mod n),其中λ(n)是n的Carmichael函数。Carmichael函数λ(n)是欧拉函数φ(n)一个特殊情况,它表示与n互质的整数的最小指数,使得a^λ(n)1 (mod n)成立Carmichael定理的应用是在判断一个数是否为素数时,通过验证a^(n-1)1 (mod n)对于一定数量的随机选择的a是否成立,可以更准确地判断一个数是否为素数。这是因为Carmichael数存在的情况下,费马小定理可能会误判一个合数为素数,而Carmichael定理可以避免这种情况的发生。 总结来说,Carmichael定理是一个用于判断一个数是否为素数的定理,它通过验证a^(λ(n))1 (mod n)对于一定数量的随机选择的a是否成立,可以更准确地判断一个数是否为素数。\[1\]\[3\] #### 引用[.reference_title] - *1* *2* [费马小定理及其应用](https://blog.csdn.net/WYW1996/article/details/102046924)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Carmichael function[卡迈克尔函数相关性质]](https://blog.csdn.net/AdijeShen/article/details/108476229)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值