http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=947
题目大意:
我们把对任意的1<x<n都有x^n=x mod n成立的合数n称为Carmichael number,给定一个整数n,判断它是不是Carmichael number。
思路:
编译器暂时改为Dev c++ 原来是VS2012 ,为了适应过几周的蓝桥杯编译环境。
直接枚举x用上快速幂即可。
还有要注意的是合数,素数就不是Carmichael number啦。
#include<cstdio>
#include<cstring>
typedef long long LL;
const int MAXN=65000+10;
bool primer[MAXN];
LL pow(LL x,LL n,LL mod) //x^n%mod
{
LL res=1;
while(n)
{
if( n & 1) res=res*x%mod;
x=x*x%mod;
n>>=1;
}
return res;
}
int main()
{
memset(primer,0,sizeof(primer));
for(int i=2;i*i<MAXN;i++)
{
if(!primer[i])
for(int j=i;j*i<MAXN;j++)
primer[i*j]=1;
}
int n;
while(scanf("%d",&n),n)
{
bool ok=true;
if(!primer[n])
ok=false;
if(ok)
for(LL i=2;i<n;i++)
{
LL temp=pow(i,n,n);
if(temp!=i)
{
ok=false;
break;
}
}
if(ok)
printf("The number %d is a Carmichael number.\n",n);
else
printf("%d is normal.\n",n);
}
return 0;
}