网络流 入门整理

直接上最高效算法:DINIC

简单地说  Dinic Algorithm分为以下两步:

1)BFS:对原图进行分层:设当前节点为u,当前节点的层数值为Value(u),u的后继节点为{Sv},那么{Sv}中所有节点的层数值Value(v)均为Value(u)+1。

2)DFS:寻找增广路,修改残量网络直至找不到新的最大流。


插一个DINIC模板。

#include<bits/stdc++.h>
#define inf 2147483647
#define max_n 405
using namespace std;
int n,m,buf1,buf2,buf3,pos;
int head[max_n],depth[max_n],cur[max_n];
bool vis[max_n];

class Edge
{
	public:
		int from;int to;int con;int nxt;int flow;
}edge[4*max_n];

void addEdge(int x,int y,int z)
{
	edge[pos].from=x;
	edge[pos].to=y;
	edge[pos].con=z;
	edge[pos].nxt=head[x];
	head[x]=pos++;
}

void dataIn()
{
	for(int i=0;i<=402;i++)
	edge[i].con=edge[i].flow=edge[i].to=edge[i].nxt=0;
	memset(head,-1,sizeof head);
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)
	{
		scanf("%d%d%d",&buf1,&buf2,&buf3);
		addEdge(buf1,buf2,buf3);
		addEdge(buf2,buf1,0);
	}
}

queue <int> q;
bool bfs()
{
	memset(vis,0,sizeof(vis));
	q.push(1); vis[1]=true; depth[1]=0;
	int u,v;
	while(!q.empty())
	{
		u=q.front();q.pop();
		for(int i=head[u];i!=-1;i=edge[i].nxt)
		{
			v=edge[i].to;
			if(!vis[v]&&edge[i].con>edge[i].flow)
			{
				vis[v]=true; depth[v]=depth[u]+1; q.push(v);
			}
		}	
	}
	return vis[m];
}

int dfs(int u,int a)
{
	if(u==m||!a) return a;
	int flow=0,f;
	for(int& i=cur[u];i!=-1;i=edge[i].nxt)
	{
		int v=edge[i].to;
		if(depth[u]+1==depth[v]&&(f=dfs(v,min(edge[i].con-edge[i].flow,a))))
		{
			edge[i].flow+=f;
			edge[i^1].flow-=f;
			flow+=f;
			a-=f;
			if(!a) break;
		}
	}
	return flow;
}

int main()
{
	int ans=0;
	dataIn();
	while(bfs())
	{
		for(int i=1;i<=m;i++)
			cur[i]=head[i];
		ans+=dfs(1,inf);
		cout<<ans;
	}
	printf("%d",ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值