《众病之王癌症》读后感_20161201

本书以时间为线索,回顾了从公元前2000年至今人类对抗癌症的历史。从最初的迷信疗法到现代医学手段,如手术、放疗、化疗及基因药物的应用,尽管过程艰难,但近百年来已取得突破性进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

书以时间为主线,记录了人们对于癌症的治疗历史。
大约公元2000年前发现了癌症。
一直到17世纪,基本都是靠跳大绳来治疗的(无法对抗感染,想做切割却无能为力)。
后来有了麻醉剂,再后来有了手术消炎药,然后病人的恶梦就开始了。
陆续有以下治疗思路为主导的方法登场:
1.坏了就割掉。结果:割完好了,没多久又复发了,仍然没法存活。
2.割掉更多的。结果:最严重的案例是乳腺癌被割掉了3根肋骨,割掉了锁骨(半个身子都没有了),这么差的体验下,还是复发了,仍然没法存活。
3.放射性治疗。结果:放射多了,会新获得其它癌症,放射少了,不管用。
4.化学治疗。结果:大剂量治疗,多种化学药品一起大剂量治疗。在一堆剧毒化学药品下,只有少部分人存活了,大部分仍然死掉了(可能是 被毒死了)。
5.放疗、化疗、手术一起来。结果:只有少部分存活了,大部分仍然活不过两年。
6.骨髓移植。化疗的加强版。结果:成活率仍然很低。
7.基因药物。结果:少部分癌症,已经可以有效治疗了,但存在变异问题,需要不停研究新药(新药的研究和上市的速度通常过慢,病人等不到药就死了)。
目前最新的治疗思想:
1.注重早期检查,虽然大部分癌症仍然没法治疗,但有一部分癌症在早期是可以完全治愈或者被控制住的。
2.注重治疗体验,会更合理的运用各种治疗方案(化疗、放疗、手术、移植、基因药物)。
总结:癌症很难治,但近100年已经有了突破性的进展,未来有可能被完全攻克。
书推荐阅读。
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值