机器翻译-注意力机制

前言这一章我们大致地了解一下NLP翻译当中经常出现的一些模型以及他们的作用

一,编码器

编码器的作用是把一个不定长的输入序列变换成一个定长的背景变量𝑐𝑐,并在该背景变量中编码输入序列信息。常用的编码器是循环神经网络。

让我们考虑批量大小为1的时序数据样本。假设输入序列是𝑥1,…,𝑥𝑇𝑥1,…,𝑥𝑇,例如𝑥𝑖𝑥𝑖是输入句子中的第𝑖𝑖个词。在时间步𝑡𝑡,循环神经网络将输入𝑥𝑡𝑥𝑡的特征向量𝑥𝑡𝑥𝑡和上个时间步的隐藏状态ℎ𝑡−1ℎ𝑡−1变换为当前时间步的隐藏状态ℎ𝑡ℎ𝑡。我们可以用函数𝑓𝑓表达循环神经网络隐藏层的变换:

ℎ𝑡=𝑓(𝑥𝑡,ℎ𝑡−1).ℎ𝑡=𝑓(𝑥𝑡,ℎ𝑡−1).

接下来,编码器通过自定义函数𝑞𝑞将各个时间步的隐藏状态变换为背景变量

𝑐=𝑞(ℎ1,…,ℎ𝑇).𝑐=𝑞(ℎ1,…,ℎ𝑇).

例如,当选择𝑞(ℎ1,…,ℎ𝑇)=ℎ𝑇𝑞(ℎ1,…,ℎ𝑇)=ℎ𝑇时,背景变量是输入序列最终时间步的隐藏状态ℎ𝑇ℎ𝑇。

以上描述的编码器是一个单向的循环神经网络,每个时间步的隐藏状态只取决于该时间步及之前的输入子序列。我们也可以使用双向循环神经网络构造编码器。在这种情况下,编码器每个时间步的隐藏状态同时取决于该时间步之前和之后的子序列(包括当前时间步的输入),并编码了整个序列的信息。

二,解码器

刚刚已经介绍,编码器输出的背景变量𝑐𝑐编码了整个输入序列𝑥1,…,𝑥𝑇𝑥1,…,𝑥𝑇的信息。给定训练样本中的输出序列𝑦1,𝑦2,…,𝑦𝑇′𝑦1,𝑦2,…,𝑦𝑇′,对每个时间步𝑡′𝑡′(符号与输入序列或编码器的时间步𝑡𝑡有区别),解码器输出𝑦𝑡′𝑦𝑡′的条件概率将基于之前的输出序列𝑦1,…,𝑦𝑡′−1𝑦1,…,𝑦𝑡′−1和背景变量𝑐𝑐,即𝑃(𝑦𝑡′∣𝑦1,…,𝑦𝑡′−1,𝑐)𝑃(𝑦𝑡′∣𝑦1,…,𝑦𝑡′−1,𝑐)。

为此,我们可以使用另一个循环神经网络作为解码器。在输出序列的时间步𝑡′𝑡′,解码器将上一时间步的输出𝑦𝑡′−1𝑦𝑡′−1以及背景变量𝑐𝑐作为输入,并将它们与上一时间步的隐藏状态𝑠𝑡′−1𝑠𝑡′−1变换为当前时间步的隐藏状态𝑠𝑡′𝑠𝑡′。因此,我们可以用函数𝑔𝑔表达解码器隐藏层的变换:

𝑠𝑡′=𝑔(𝑦𝑡′−1,𝑐,𝑠𝑡′−1).𝑠𝑡′=𝑔(𝑦𝑡′−1,𝑐,𝑠𝑡′−1).

有了解码器的隐藏状态后,我们可以使用自定义的输出层和softmax运算来计算𝑃(𝑦𝑡′∣𝑦1,…,𝑦𝑡′−1,𝑐)𝑃(𝑦𝑡′∣𝑦1,…,𝑦𝑡′−1,𝑐),例如,基于当前时间步的解码器隐藏状态 𝑠𝑡′𝑠𝑡′、上一时间步的输出𝑦𝑡′−1𝑦𝑡′−1以及背景变量𝑐𝑐来计算当前时间步输出𝑦𝑡′𝑦𝑡′的概率分布。

三,束搜索

束搜索(beam search)是对贪婪搜索的一个改进算法。它有一个束宽(beam size)超参数。我们将它设为𝑘𝑘。在时间步1时,选取当前时间步条件概率最大的𝑘𝑘个词,分别组成𝑘𝑘个候选输出序列的首词。在之后的每个时间步,基于上个时间步的𝑘𝑘个候选输出序列,从𝑘||𝑘|𝑌|个可能的输出序列中选取条件概率最大的𝑘𝑘个,作为该时间步的候选输出序列。最终,我们从各个时间步的候选输出序列中筛选出包含特殊符号“<eos>”的序列,并将它们中所有特殊符号“<eos>”后面的子序列舍弃,得到最终候选输出序列的集合。

图10.11 束搜索的过程。束宽为2,输出序列最大长度为3。候选输出序列有A、C、AB、CE、ABD和CED

在最终候选输出序列的集合中,我们取以下分数最高的序列作为输出序列:

1𝐿𝛼log𝑃(𝑦1,…,𝑦𝐿)=1𝐿𝛼∑𝑡′=1𝐿log𝑃(𝑦𝑡′∣𝑦1,…,𝑦𝑡−1,𝑐),1𝐿𝛼log⁡𝑃(𝑦1,…,𝑦𝐿)=1𝐿𝛼∑𝑡′=1𝐿log⁡𝑃(𝑦𝑡′∣𝑦1,…,𝑦𝑡′−1,𝑐),

其中𝐿𝐿为最终候选序列长度,𝛼𝛼一般可选为0.75。分母上的𝐿𝛼𝐿𝛼是为了惩罚较长序列在以上分数中较多的对数相加项。分析可知,束搜索的计算开销为(𝑘||𝑇′)𝑂(𝑘|𝑌|𝑇′)。这介于贪婪搜索和穷举搜索的计算开销之间。此外,贪婪搜索可看作是束宽为1的束搜索。束搜索通过灵活的束宽𝑘𝑘来权衡计算开销和搜索质量。

*四,注意力机制

仍然以循环神经网络为例,注意力机制通过对编码器所有时间步的隐藏状态做加权平均来得到背景变量。解码器在每一时间步调整这些权重,即注意力权重,从而能够在不同时间步分别关注输入序列中的不同部分并编码进相应时间步的背景变量。本节我们将讨论注意力机制是怎么工作的。

在一二节(编码器—解码器(seq2seq))里我们区分了输入序列或编码器的索引𝑡𝑡与输出序列或解码器的索引𝑡′𝑡′。该节中,解码器在时间步𝑡′𝑡′的隐藏状态𝑠𝑡′=𝑔(𝑦𝑡′−1,𝑐,𝑠𝑡′−1)𝑠𝑡′=𝑔(𝑦𝑡′−1,𝑐,𝑠𝑡′−1),其中𝑦𝑡′−1𝑦𝑡′−1是上一时间步𝑡′−1𝑡′−1的输出𝑦𝑡′−1𝑦𝑡′−1的表征,且任一时间步𝑡′𝑡′使用相同的背景变量𝑐𝑐。但在注意力机制中,解码器的每一时间步将使用可变的背景变量。记𝑐𝑡′𝑐𝑡′是解码器在时间步𝑡′𝑡′的背景变量,那么解码器在该时间步的隐藏状态可以改写为

𝑠𝑡′=𝑔(𝑦𝑡′−1,𝑐𝑡′,𝑠𝑡′−1).𝑠𝑡′=𝑔(𝑦𝑡′−1,𝑐𝑡′,𝑠𝑡′−1).

这里的关键是如何计算背景变量𝑐𝑡′𝑐𝑡′和如何利用它来更新隐藏状态𝑠𝑡′𝑠𝑡′。下面将分别描述这两个关键点。

为了和其他博主区分不同,在此我们仅仅只是了解注意力机制的内容是远远不够的因此,本人建议可以参考以下文献《融合认知大模型和多模态深度学习的电解铜需求预测方法》其中有部分内容很好地解释了注意力机制的运用和原理以下为引用内容

"构建多头注意力机制模型融合数值特征与文本特征:根据注意力机制对于模态中的不同特征的重要程度分配不同的权重的特点,欲解决传统注意力机制中特征融合方法可能会导致的信息损失或者信息冗余的问题,在此采用特征处理的多头注意力机制能够在保持更多信息的同时,有效地筛选和融合有用的特征,从而提高特征融合的效率和准确性。这种方法可以同时关注输入的不同方面,从而使得模型能够捕捉到更多样化、更全面的特征信息,使每个注意力头可以专注于捕捉输入的不同方面。"

在这我们可以清楚地看到多头注意力机制的运用和交叉融合的特点,之后我们将在机器翻译的过程中运用到。

当然后面经过softmax进行归一化的内容我们在上一节中提到所以不过多赘述。

五,机器翻译

机器翻译是指将一段文本从一种语言自动翻译到另一种语言。因为一段文本序列在不同语言中的长度不一定相同,所以我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。

下面是具体的实施步骤

5.1读取和预处理数据
import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data

import sys
# sys.path.append("..") 
import d2lzh_pytorch as d2l

PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print(torch.__version__, device)

接着定义两个辅助函数对后面读取的数据进行预处理。

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

读取和识别

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]
5.2训练模型

在训练之前对注意力机制的编码器和译码器需要一定的构建这一部分省略。

我们先实现batch_loss函数计算一个小批量的损失。解码器在最初时间步的输入是特殊字符BOS。之后,解码器在某时间步的输入为样本输出序列在上一时间步的词,即强制教学。此外,同10.3节(word2vec的实现)中的实现一样,我们在这里也使用掩码变量避免填充项对损失函数计算的影响。

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

训练函数定义

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)

    loss = nn.CrossEntropyLoss(reduction='none')
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    for epoch in range(num_epochs):
        l_sum = 0.0
        for X, Y in data_iter:
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            l = batch_loss(encoder, decoder, X, Y, loss)
            l.backward()
            enc_optimizer.step()
            dec_optimizer.step()
            l_sum += l.item()
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

相关的超参数的选取并且运行

embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)
测试结果:
epoch 10, loss 0.473
epoch 20, loss 0.166
epoch 30, loss 0.046
epoch 40, loss 0.019
epoch 50, loss 0.017
5.2.2测试

那么简单地测试一下我们的翻译模型吧

def translate(encoder, decoder, input_seq, max_seq_len):
    in_tokens = input_seq.split(' ')
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
    enc_state = encoder.begin_state()
    enc_output, enc_state = encoder(enc_input, enc_state)
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    dec_state = decoder.begin_state(enc_state)
    output_tokens = []
    for _ in range(max_seq_len):
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        pred = dec_output.argmax(dim=1)
        pred_token = out_vocab.itos[int(pred.item())]
        if pred_token == EOS:  # 当任一时间步搜索出EOS时,输出序列即完成
            break
        else:
            output_tokens.append(pred_token)
            dec_input = pred
    return output_tokens

输入法语句子“ils regardent.”

nput_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)

这是一句法语看看翻译后的结果

['they', 'are', 'watching', '.']

看样子还可以。

5.3评价结果

评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)[1]。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

具体来说,设词数为𝑛𝑛的子序列的精度为𝑝𝑛𝑝𝑛。它是预测序列与标签序列匹配词数为𝑛𝑛的子序列的数量与预测序列中词数为𝑛𝑛的子序列的数量之比。举个例子,假设标签序列为𝐴𝐴、𝐵𝐵、𝐶𝐶、𝐷𝐷、𝐸𝐸、𝐹𝐹,预测序列为𝐴𝐴、𝐵𝐵、𝐵𝐵、𝐶𝐶、𝐷𝐷,那么𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0。设𝑙𝑒𝑛label𝑙𝑒𝑛label和𝑙𝑒𝑛pred𝑙𝑒𝑛pred分别为标签序列和预测序列的词数,那么,BLEU的定义为

exp(min(0,1−𝑙𝑒𝑛label𝑙𝑒𝑛pred))∏𝑛=1𝑘𝑝1/2𝑛𝑛,exp⁡(min(0,1−𝑙𝑒𝑛label𝑙𝑒𝑛pred))∏𝑛=1𝑘𝑝𝑛1/2𝑛,

其中𝑘𝑘是我们希望匹配的子序列的最大词数。可以看到当预测序列和标签序列完全一致时,BLEU为1。

def bleu(pred_tokens, label_tokens, k):
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    score = math.exp(min(0, 1 - len_label / len_pred))
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int)
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    return score
def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))
score('ils regardent .', 'they are watching .', k=2)
score('ils sont canadienne .', 'they are canadian .', k=2)
bleu 1.000, predict: they are watching .
bleu 0.658, predict: they are russian .

因为匹配较长子序列比匹配较短子序列更难,BLEU对匹配较长子序列的精度赋予了更大权重。例如,当𝑝𝑛𝑝𝑛固定在0.5时,随着𝑛𝑛的增大,0.51/2≈0.7,0.51/4≈0.84,0.51/8≈0.92,0.51/16≈0.960.51/2≈0.7,0.51/4≈0.84,0.51/8≈0.92,0.51/16≈0.96。另外,模型预测较短序列往往会得到较高𝑝𝑛𝑝𝑛值。因此,上式中连乘项前面的系数是为了惩罚较短的输出而设的。举个例子,当𝑘=2𝑘=2时,假设标签序列为𝐴𝐴、𝐵𝐵、𝐶𝐶、𝐷𝐷、𝐸𝐸、𝐹𝐹,而预测序列为𝐴𝐴、𝐵𝐵。虽然𝑝1=𝑝2=1𝑝1=𝑝2=1,但惩罚系数exp(1−6/2)≈0.14exp⁡(1−6/2)≈0.14,因此BLEU也接近0.14。

以上就是本节的内容

此文章为个人编写,引用时请注明链接来源以及作者

感谢 您的 阅读点赞收藏  评论 ,别忘了 还可以 关注 一下哈,感谢 您的支持

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值