pycharm使用技巧-调试代码tensor显示不完整

当遇到在Pycharm中调试Tensor时,由于张量过长导致显示被压缩,可以采用几种方法解决。一种是设置`torch.set_printoptions(profile=full)`来显示完整张量,但可能影响性能。另一种方法是将Tensor转换为numpy数组`np.array(tensor)`进行查看。此外,还可以在调试时右键选择`evaluateExpression`转换为numpy数组并查看。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:

在代码调试过程中对于过长的tensor张量,pycharm会自动压缩,示例:

调试查看tensor变量值截图:

 输出到console面板tensor截图:

 

 解决方案一:设置输出选项

插入代码

torch.set_printoptions(profile="full") #set print the whole tensor

此方案在遇到较大tensor时,断点查看可能加载缓慢,print输出比较稳定

使用完记得执行设置默认压缩输出

torch.set_printoptions(profile="full") # 或者max

解决方案二:转换类型后输出

插入代码

import numpy as np

ten_val=np.array(tensor)

解决方案三:不动源代码,调试过程中,选中tensor变量,右键evaluate Expression,将变量值改为 np.array(xx),这里xx是tensor变量值,点击Evaluate按钮,然后点击View as Array

 在左下角可以输入查看维度

为了在Windows安装ADB工具,你可以按照以下步骤进行操作: 1. 首先,下载ADB工具包并解压缩到你自定义的安装目录。你可以选择将其解压缩到任何你喜欢的位置。 2. 打开运行窗口,可以通过按下Win+R键来快速打开。在运行窗口中输入"sysdm.cpl"并按下回车键。 3. 在系统属性窗口中,选择"高级"选项卡,然后点击"环境变量"按钮。 4. 在环境变量窗口中,选择"系统变量"部分,并找到名为"Path"的变量。点击"编辑"按钮。 5. 在编辑环境变量窗口中,点击"新建"按钮,并将ADB工具的安装路径添加到新建的路径中。确保路径正确无误后,点击"确定"按钮。 6. 返回到桌面,打开命令提示符窗口。你可以通过按下Win+R键,然后输入"cmd"并按下回车键来快速打开命令提示符窗口。 7. 在命令提示符窗口中,输入"adb version"命令来验证ADB工具是否成功安装。如果显示版本信息,则表示安装成功。 这样,你就成功在Windows安装ADB工具。你可以使用ADB工具来执行各种操作,如枚举设备、进入/退出ADB终端、文件传输、运行命令、查看系统日志等。具体的操作方法可以参考ADB工具的官方文档或其他相关教程。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [windows环境安装adb驱动](https://blog.csdn.net/zx54633089/article/details/128533343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Windows安装使用ADB简单易懂教程](https://blog.csdn.net/m0_37777700/article/details/129836351)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值