- 博客(13)
- 收藏
- 关注
原创 CAM[CVPR16]+Grad-CAM[ICCV17]
CAMpaper:Learning Deep Features for Discriminative Localization本文的出发点是为了神经网络的可解释性,即高亮出神经网络的激活区域。可用于object detection(location)。给定任意一个网络结构(分类网络)。CAM的做法将网络结构的最后一层删去,设删去后得到的是(w,h,n)(w,h,n)(w,h,n)...
2019-09-02 15:28:08 463
原创 GAIN [CVPR18]
GAINpaper: Tell Me Where to Look: Guided Attention Inference Network本文是基于SEC算法进行的改进,在SEC的基础上提升了5个百分点左右。这篇文章…感觉没有什么创新…其实就是类似对抗擦除的思路,将第一次识别出来的区域进行遮挡,强迫神经网络找出所有能用于识别类别的信息。结构如下:输入图像III,经过DCNN得到识...
2019-05-13 15:05:59 741
原创 DSRG [CVPR18]
DSRGpaper: Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing文章被18年的CVPR收录,文章的出发点是:CAM能够提供物体最具辨识度的区域,但是对于物体辨识度较低的区域没有识别出来,所以如何正确划分这些待定区域是主要要解决的问题。作者考虑将CAM的结果作为初始种子,之后...
2019-05-09 16:36:19 1197 1
原创 STC [PAMI16]
STCpaper: STC: A Simple to Complex Framework for Weakly-supervised Semantic SegmentationSTC的意思是simple to complex,很好的解释了本文提出的思路。考虑到W3S中对于不同的图像III,其对应的image-level的监督信息zzz往往可能是多个类别,即一张图像中存在多个类别,这给神...
2019-05-07 19:27:35 205
原创 AdvErasing [CVPR17]
AdvErasingpaper: Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach文章发表在2017年的CVPR上,同样的也是基于CAM进行后续处理。作者考虑到CAM网络是通过训练辨别模型从而得到score map/heat m...
2019-05-06 21:04:36 252
原创 SEC [ECCV16]
SECpaper: Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation本文是发表在16年的ECCV上,本篇文章使用到了CAM的思路,算是拉开了后面基于CAM进行改进的序幕。文章提出的网络的损失函数由三个部分的loss组成:LseedL_{seed}Lseed,Lexp...
2019-05-06 10:57:23 415
原创 MIL+seg [CVPR15]
MIL+segpaper: From Image-level to Pixel-level Labeling with Convolutional Networks这是15年CVPR的文章,个人感觉架构和CAM有异曲同工之处。与EM-adapt一样都是基于DCNN解决W3S问题。同样输入图像经过DCNN得到了LLL张(原图12倍下采样)的特征图。由于我们的labelzzz是image-...
2019-05-05 16:23:10 270
原创 EM-adapt [ICCV15]
弱监督语义分割(weakly supervised semantic segmentation 下称W3S)EM-Adaptpaper: Weakly-and semi-supervised learning of a DCNN for seman- tic image segmentation.是ICCV15的文章,EM指Expectation-Maximization(期望最大化)...
2019-05-04 18:31:49 263
原创 FullyConvolutionalNetworksforSemanticSegmentation 论文笔记
FCN的意义端到端的意义,是语义分割端到端模型的开山之作性能相较之前state-of-the-art的算法在PASCAL VOC test上的mIoU提升11%虽然本文的意义主要在于开创端到端语义分割,但是文章的主要工作是在如何将卷积得到的特征图恢复至原图大小与之前做法的对比RCNN:先用传统方法获得2k个候选框(框有大有小),暴力缩放至同一尺寸后传至CNN网络提取特征,之后将特征传...
2019-03-16 14:54:54 439
原创 生成对抗网络&sigmoid
GAN论文:https://arxiv.org/abs/1406.2661sigmoidsigmoid/tanh作为映射函数,很好的把输出限制到目标区间,但是随之带来的问题是反向传播的收敛问题——梯度消失。f(x)=sigmoid(x)f(x) = sigmoid(x)f(x)=sigmoid(x)∇f(x)=sigmoid(x)[1−sigmoid(x)]\nabla f(x) = s...
2019-03-09 21:50:30 381
原创 傅里叶级数
傅里叶级数适用场景周期性的待转换函数f(t)f(t)f(t),经过傅里叶级数(拆分为)后能够得到无数个sinsin\sin和coscos\cos的三角函数,即可以把任一周期性函数转换为若干/无数个三角函数之和。思考流程1.由于sinsin\sin和coscos\cos函数可以通过调整相位得到,所以问题变成将f(t)f(t)f(t)转换为若干/无数个可能带相位的正弦函数相加(...
2018-09-06 20:36:18 834
原创 notes of primal-dual
例题: 原问题:maxf=x1+2x2+4x3maxf=x1+2x2+4x3\max f=x_1+2x_2+4x_3 x1+x2+3x3≥2x1+x2+3x3≥2x_1+x_2+3x_3≥2 x1+7x2+x3≥8x1+7x2+x3≥8x_1+7x_2+x_3≥ 8 2x1+x2+x3≥22x1+x2+x3≥22x_1+x_2+x_3≥2 x1≥0,x2≥0,x3无...
2018-04-17 15:43:20 247
原创 线性回归&逻辑回归&最小二乘法&最大似然法
线性回归:target function: f(x)=wx+bf(x)=wx+bf(x)=wx+b loss function: 最小二乘的角度: min∑i=0N(yi−f(xi))2min∑i=0N(yi−f(xi))2min \sum_{i=0}^N(y_i-f(x_i))^2 最大似然的角度: max∏i=0N(12π−−√σe−(yi...
2018-04-12 21:40:18 1219
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人