对偶问题

例题:

原问题:

maxf=x1+2x2+4x3

x1+x2+3x32

x1+7x2+x38

2x1+x2+x32

x10,x20,x3

对偶问题:
ming=2y1+8y2+2y3

y1+y2+2y31

y1+7y2+y32

3y1+y2+y34

y10,y20,y3

 
对于一个问题:
max(cX),约束条件为:AXb
转换为对偶问题:
min(bTY),约束条件为:ATYcT
(以上AXYcb 均为矩阵)
 
转换过程:
ATYcT带入原问题:
(cX)=((cT)TX)((ATY)TX)=(YTAX)
AXb带入式中:
(YTAX)(YTb)
因为(YTb)是最终的结果,是(1×1)的矩阵,所以(YTb)=(bTY)

SUAMMARY:
对于任意的满足各自约束的XY向量,都有(cX)(bTY),所以max(cX)=min(bTY)

附上截自百度文库的转换规则:
这里写图片描述

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/mutou_cly/article/details/79975851
文章标签: 对偶问题
个人分类: 机器学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭