对偶问题

原创 2018年04月17日 15:43:20

例题:

原问题:

maxf=x1+2x2+4x3

x1+x2+3x32

x1+7x2+x38

2x1+x2+x32

x10,x20,x3

对偶问题:
ming=2y1+8y2+2y3

y1+y2+2y31

y1+7y2+y32

3y1+y2+y34

y10,y20,y3

 
对于一个问题:
max(cX),约束条件为:AXb
转换为对偶问题:
min(bTY),约束条件为:ATYcT
(以上AXYcb 均为矩阵)
 
转换过程:
ATYcT带入原问题:
(cX)=((cT)TX)((ATY)TX)=(YTAX)
AXb带入式中:
(YTAX)(YTb)
因为(YTb)是最终的结果,是(1×1)的矩阵,所以(YTb)=(bTY)

SUAMMARY:
对于任意的满足各自约束的XY向量,都有(cX)(bTY),所以max(cX)=min(bTY)

附上截自百度文库的转换规则:
这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/mutou_cly/article/details/79975851

凸优化与对偶问题

这个是凸优化的最基本的形式: $$\begin{align}&\operatorname{minimize}&&f_0(x)\\&\operatorname{subject\;to}&&f_i(x)...
  • u013421941
  • u013421941
  • 2017-01-20 23:07:57
  • 1541

最优化学习笔记(十一)——对偶问题的例子

某线性规划问题为: mincTxst.Ax≤b \min \boldsymbol{c}^T\boldsymbol{x} \\ st. \boldsymbol{Ax} \le \boldsymbol{...
  • chunyun0716
  • chunyun0716
  • 2016-09-16 11:23:14
  • 1021

凸优化-对偶问题

很高兴阿森纳能在欧冠上战胜拜仁,在虎扑上看到这样的一句话,颇有感触,借来作为这篇博文的开始,生活中我们需要一些勇气去追寻自己的理想。回到本篇内容上,对偶是个神奇的东西,从文学角度而言,对偶和对仗属于一...
  • bbbeoy
  • bbbeoy
  • 2017-05-18 12:00:36
  • 1654

关于拉格朗日对偶问题中对偶性的理解

Markdown编辑的版本 首先说明本文讨论用的符号,拉格朗日函数: L(x,λ,ν)=f0(x)+∑λifi(x)+∑νihi(x) 对偶问题的对偶性体现 这个理解来自于斯坦福的课程——凸优化...
  • donger_soft
  • donger_soft
  • 2014-09-27 10:40:30
  • 31489

最优化学习笔记(十)——对偶线性规划

一、对偶问题    每个线性规划问题都有一个与之对应的对偶问题。对偶问题是以原问题的约束条件和目标函数为基础构造而来的。对偶问题也是一个线性规划问题,因此可以采用单纯形法(有关单纯形法会在以后的笔记中...
  • chunyun0716
  • chunyun0716
  • 2016-09-03 16:45:23
  • 4232

SVM的原问题和对偶问题模型

这两天,我翻开沉压已久的学习笔记,看到了当初总结的SVM学习心得,为了避免不小心弄丢了,就在这里重新记录一下吧,希望对初学机器学习理论并热爱公式推导的朋友有所帮助。SVM作为一种经典的机器学习算法,在...
  • diligent_321
  • diligent_321
  • 2016-11-29 18:12:59
  • 4772

支持向量机入门系列-4:对偶问题

回忆上一节,对如下的原问题:                                    (1) 我们定义了拉格朗日对偶函数: 然后我们证明了:,其中p*是原问题的最优值。 也就...
  • vivihe0
  • vivihe0
  • 2011-12-12 09:29:17
  • 10436

支持向量机SVM中的对偶问题

6 拉格朗日对偶(Lagrange duality)      先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题:              目标函...
  • Angel_YJ
  • Angel_YJ
  • 2014-09-24 15:48:42
  • 3674

机器学习----SVM(2)从原始问题到对偶问题的转换

SVM的水真是太深了,只能一点一点的解决了,今天这篇博客简单讲解SVM的目标函数从原始问题到对偶问题的转换。在这里再给大家一个大牛的博客链接:http://blog.pluskid.org/?p=68...
  • Sunshine_in_Moon
  • Sunshine_in_Moon
  • 2016-05-05 12:15:32
  • 8466

拉格朗日对偶问题(Lagrange duality)

介绍拉格朗日对偶中的原始问题、对偶问题以及原始问题与对偶问题的关系
  • blackyuanc
  • blackyuanc
  • 2017-03-28 21:48:07
  • 989
收藏助手
不良信息举报
您举报文章:对偶问题
举报原因:
原因补充:

(最多只允许输入30个字)