椭圆曲线形式下的Pedersen commitment——vector commitment和polynomial commitment

1. 椭圆曲线下的Pedersen commitment

椭圆曲线下Pedersen commitment可用scalar multiplication of curve points来表示:
C = r H + a G C=rH+aG C=rH+aG
其中, C C C为椭圆曲线上的一个点curve point,作为commitment; a a a为commit to 的数值; r r r为随机数,可提供隐藏功能; G G G为所选择椭圆曲线广泛接受的generator; H H H为椭圆曲线上的另一个点,且保证无任何可推导 q q q,使得 H = q G H=qG H=qG,这个H与G直接无明确关系非常重要。

如需open commitment C C C,需要提供r值和a值。

Pedersen commitment具有加法同态性:
C ( r 1 , a 1 ) + C ( r 2 , a 2 ) = r 1 H + a 1 G + r 2 H + a 2 G = ( r 1 + r 2 ) H + ( a 1 + a 2 ) G = C ( r 1 + r 2 , a 1 + a 2 ) C(r_1,a_1)+C(r_2,a_2)=r_1H+a_1G+r_2H+a_2G=(r_1+r_2)H+(a_1+a_2)G=C(r_1+r_2,a_1+a_2) C(r1,a1)+C(r2,a2)=r1H+a1G+r2H+a2G=(r1+r2)H+(a1+a2)G=C(r1+r2,a1+a2)

2. Vector Pedersen Commitment 向量commitment

C = r H + ( v 1 G 1 + v 2 G 2 + . . . . + v n G n ) = r H + v ⃗ G ⃗ C=rH+(v_1G_1+v_2G_2+....+v_nG_n)=rH+\vec v\vec G C=rH+(v1G1+v2G2+....+vnGn)=rH+v G
其中,各个 G i G_i Gi可由 H a s h ( e n c o d e ( G ) ∣ ∣ i ) Hash(encode(G)||i) Hash(encode(G)i)来获取。

如需open commitment C C C,需要提供随机数r值和向量值 v ⃗ \vec v v

向量值 v ⃗ \vec v v 中可以有大量元素,但最终的commitment只为椭圆曲线上的一个点 C C C

也可以同时对多个Vector进行commitment,如对 v ⃗ , w ⃗ \vec v,\vec w v ,w 同时commitment:
C = r H + v ⃗ G ⃗ + w ⃗ H ⃗ C=rH+\vec v\vec G+\vec w\vec H C=rH+v G +w H
其中,各个 H i H_i Hi可由 H a s h ( e n c o d e ( H ) ∣ ∣ i ) Hash(encode(H)||i) Hash(encode(H)i)来获取,即curve point H H H不在vector H ⃗ \vec H H 中。

3. A zero knowledge argument of knowledge of a set of vectors——一系列向量的零知识证明

假设有m个向量 x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ m \vec x_1,\vec x_2, ..., \vec x_m x 1,x 2,...,x m,且每个向量都有N个元素( N ! = m N != m N!=m)。已知各个向量的commitment为:
C 1 = r 1 H + x ⃗ 1 G ⃗ C_1=r_1H+\vec x_1 \vec G C1=r1H+x 1G
C 2 = r 2 H + x ⃗ 2 G ⃗ C_2=r_2H+\vec x_2 \vec G C2=r2H+x 2G
. . . ... ...
C m = r m H + x ⃗ m G ⃗ C_m=r_mH+\vec x_m \vec G Cm=rmH+x mG

以下 P P P代表prover, V V V代表Verifier。
a) P → V : C 0 P \rightarrow V: C_0 PV:C0 (a new commitment to a newly chosen random vector of dimension N)
b) V → P : e V \rightarrow P: e VP:e (a random scalar,也可称为challenge值。)
c) P → V : ( z ⃗ , s ) P \rightarrow V: (\vec z, s) PV:(z ,s) (a single vector of dimension N, and another scalar)
其中:
z ⃗ = ∑ i = 0 m e i x ⃗ i , s = ∑ i = 0 m e i r i \vec z=\sum_{i=0}^{m}e^i\vec x_i, \quad s=\sum_{i=0}^{m}e^ir_i z =i=0meix i,s=i=0meiri

通过随机数 e e e,可很好的隐藏向量 x ⃗ \vec x x ,如取 z ⃗ \vec z z 向量的第二个元素—— z 2 = x 02 + e x 12 + . . . + e m x m 2 z_2=x_{02}+ex_{12}+...+e^mx_{m2} z2=x02+ex12+...+emxm2
有1*m维矩阵:
( 1 , e , e 2 , . . . , e m ) (1,e,e^2,...,e^m) (1,e,e2,...,em)
使得z值无法获取相应的x值。

对于Verifier,只需验证:
∑ i = 0 m e i C i = ? s H + z ⃗ G ⃗ \sum_{i=0}^{m}e^iC_i=?sH+\vec z\vec G i=0meiCi=?sH+z G

证明过程如下:
s H + z ⃗ G ⃗ = ∑ i = 0 m e i ( r i H ) + ∑ i = 0 m e i x ⃗ i G ⃗ = ∑ i = 0 m e i ( r i H + x ⃗ i G ⃗ ) = ∑ i = 0 m e i C i sH+\vec z\vec G=\sum_{i=0}^{m}e^i(r_iH)+\sum_{i=0}^{m}e^i\vec x_i\vec G=\sum_{i=0}^{m}e^i(r_iH+\vec x_i\vec G)=\sum_{i=0}^{m}e^iC_i sH+z G =i=0mei(riH)+i=0meix iG =i=0mei(riH+x iG )=i=0meiCi

由以上证明可知,Verifer可根据信息 ( C 0 , e , ( z ⃗ , s ) ) (C_0,e,(\vec z, s)) (C0,e,(z ,s)),可信服honest prover的proof ( z ⃗ , s ) (\vec z, s) (z ,s)

但是对于不诚信的prover,他可以随机选择 e , ( z ⃗ , s ) e,(\vec z, s) e,(z ,s)值,并根据之前已生成的 C 1 , C 2 , . . . , C m C_1,C_2,...,C_m C1,C2,...,Cm值,推导出 C 0 = ( s H + z ⃗ G ⃗ ) − ( ∑ i = 1 m e i C i ) C_0=(sH+\vec z\vec G)-(\sum_{i=1}^{m}e^{i}C_i) C0=(sH+z G )(i=1meiCi)
使得 ∑ i = 0 m e i C i = C 0 + ∑ i = 1 m e i C i = ( s H + z ⃗ G ⃗ ) − ( ∑ i = 1 m e i C i ) + ∑ i = 1 m e i C i = s H + z ⃗ G ⃗ \sum_{i=0}^{m}e^iC_i=C_0+\sum_{i=1}^{m}e^{i}C_i=(sH+\vec z\vec G)-(\sum_{i=1}^{m}e^{i}C_i)+\sum_{i=1}^{m}e^{i}C_i=sH+\vec z\vec G i=0meiCi=C0+i=1meiCi=(sH+z G )(i=1meiCi)+i=1meiCi=sH+z G 恒成立,因此,对于此种情况,不诚信的prover可伪造相应的证明。

若需要open此种情况下的commitment,需要提供 C 1 , C 2 , . . . C m C_1,C_2,...C_m C1,C2,...Cm对应的共m个scalar数 r 1 , r 2 , . . . , r m r_1,r_2,...,r_m r1,r2,...,rm,以及 m ∗ N m*N mN个向量元素 x 11 , x 12 , . . . , x m N x_{11},x_{12},...,x_{mN} x11,x12,...,xmN

3.1 一系列向量的零知识证明的soundness验证

修改上面的流程,重复a)b)c)步骤m+1次,每次均为scalar e提供不同的随机值 e j e_j ej
( C 0 , 0 , e 0 , ( z ⃗ 0 , s 0 ) ) (C_{0,0},e_0,(\vec z_0,s_0)) (C0,0,e0,(z 0,s0))
( C 0 , 1 , e 1 , ( z ⃗ 1 , s 1 ) ) (C_{0,1},e_1,(\vec z_1,s_1)) (C0,1,e1,(z 1,s1))
( C 0 , 2 , e 2 , ( z ⃗ 2 , s 2 ) ) (C_{0,2},e_2,(\vec z_2,s_2)) (C0,2,e2,(z 2,s2))
. . . ... ...
( C 0 , m , e m , ( z ⃗ m , s m ) ) (C_{0,m},e_m,(\vec z_m,s_m)) (C0,m,em,(z m,sm))

相应地:
z ⃗ j = ∑ i = 0 m e j i x ⃗ i , s j = ∑ i = 0 m e j i r i , 其 中 j ∈ [ 0 , m ] \vec z_j=\sum_{i=0}^{m}e_j^i\vec x_i, \quad s_j=\sum_{i=0}^{m}e_j^ir_i, \quad 其中j\in [0,m] z j=i=0mejix i,sj=i=0mejiri,j[0,m]

则 有(m+1)*(m+1)维矩阵:
A − 1 = ( 1 e 0 e 0 2 . . . e 0 m 1 e 1 e 1 2 . . . e 1 m 1 e 2 e 2 2 . . . e 2 m . . . 1 e m e m 2 . . . e m m ) A^{-1}=\begin{pmatrix} 1& e_0& e_0^2 &... &e_0^m \\ 1& e_1& e_1^2 &... &e_1^m\\ 1& e_2& e_2^2 &... &e_2^m\\ ...& & & & \\ 1& e_m& e_m^2 &... &e_m^m \end{pmatrix} A1=111...1e0e1e2eme02e12e22em2............e0me1me2memm
使得z值无法获取相应的x值。该矩阵为Vandermonde 矩阵。
e 0 , e 1 , . . . , e m e_0,e_1,...,e_m e0,e1,...,em互异,则存在对应的逆矩阵为:
A = ( a 00 a 01 a 02 . . . a 0 m a 10 a 11 a 12 . . . a 1 m a 20 a 21 a 22 . . . a 2 m . . . a m 0 a m 1 a m 2 . . . a m m ) A=\begin{pmatrix} a_{00}& a_{01}& a_{02}&... &a_{0m} \\ a_{10}& a_{11}& a_{12}&... &a_{1m} \\ a_{20}& a_{21}& a_{22}&... &a_{2m} \\ ...& & & & \\ a_{m0}& a_{m1}& a_{m2}&... &a_{mm} \end{pmatrix} A=a00a10a20...am0a01a11a21am1a02a12a22am2............a0ma1ma2mamm

相应的Z也为矩阵,满足:
Z = A − 1 X = ( 1 e 0 e 0 2 . . . e 0 m 1 e 1 e 1 2 . . . e 1 m 1 e 2 e 2 2 . . . e 2 m . . . 1 e m e m 2 . . . e m m ) ( x ⃗ 0 x ⃗ 1 x ⃗ 2 . . . x ⃗ m ) = ( ∑ i = 0 m e 0 i x ⃗ i ∑ i = 0 m e 1 i x ⃗ i ∑ i = 0 m e 2 i x ⃗ i . . . ∑ i = 0 m e m i x ⃗ i ) = ( z ⃗ 0 z ⃗ 1 z ⃗ 2 . . . z ⃗ m ) Z=A^{-1}X=\begin{pmatrix} 1& e_0& e_0^2 &... &e_0^m \\ 1& e_1& e_1^2 &... &e_1^m\\ 1& e_2& e_2^2 &... &e_2^m\\ ...& & & & \\ 1& e_m& e_m^2 &... &e_m^m \end{pmatrix}\begin{pmatrix} \vec x_0\\ \vec x_1\\ \vec x_2\\ ... \\ \vec x_m \end{pmatrix}=\begin{pmatrix} \sum_{i=0}^{m}e_0^i\vec x_i\\ \sum_{i=0}^{m}e_1^i\vec x_i\\ \sum_{i=0}^{m}e_2^i\vec x_i\\ ... \\ \sum_{i=0}^{m}e_m^i\vec x_i \end{pmatrix}=\begin{pmatrix} \vec z_0\\ \vec z_1\\ \vec z_2\\ ... \\ \vec z_m \end{pmatrix} Z=A1X=111...1e0e1e2eme02e12e22em2............e0me1me2memmx 0x 1x 2...x m=i=0me0ix ii=0me1ix ii=0me2ix i...i=0memix i=z 0z 1z 2...z m

即相当于求m+1个方程式,存在唯一解 ( x ⃗ 0 , x ⃗ 1 , . . . , x ⃗ m ) (\vec x_0, \vec x_1,..., \vec x_m) (x 0,x 1,...,x m)。即可保证soundness。

e 0 , e 1 , . . . , e m e_0,e_1,...,e_m e0,e1,...,em不互异,则可逆矩阵A不存在,也不能保证解的唯一性。

根据矩阵基础知识,矩阵B存在可逆矩阵的充分必要条件为B的判别式不为零,即det|B|!=0。
A的可逆矩阵A-1之间的关系有: A A − 1 = I , I 为 单 位 矩 阵 AA^{-1}=I,I为单位矩阵 AA1=I,I,即:
A A − 1 = ( a 00 a 01 a 02 . . . a 0 m a 10 a 11 a 12 . . . a 1 m a 20 a 21 a 22 . . . a 2 m . . . a m 0 a m 1 a m 2 . . . a m m ) ( 1 e 0 e 0 2 . . . e 0 m 1 e 1 e 1 2 . . . e 1 m 1 e 2 e 2 2 . . . e 2 m . . . 1 e m e m 2 . . . e m m ) = ( 1 0 0 . . . 0 0 1 0 . . . 0 0 0 1 . . . 0 . . . 0 0 0 . . . 1 ) = ( δ 00 δ 01 δ 02 . . . δ 0 m δ 10 δ 11 δ 12 . . . δ 1 m δ 20 δ 21 δ 22 . . . δ 2 m . . . δ m 0 δ m 1 δ m 2 . . . δ m m ) AA^{-1}=\begin{pmatrix} a_{00}& a_{01}& a_{02}&... &a_{0m} \\ a_{10}& a_{11}& a_{12}&... &a_{1m} \\ a_{20}& a_{21}& a_{22}&... &a_{2m} \\ ...& & & & \\ a_{m0}& a_{m1}& a_{m2}&... &a_{mm} \end{pmatrix}\begin{pmatrix} 1& e_0& e_0^2 &... &e_0^m \\ 1& e_1& e_1^2 &... &e_1^m\\ 1& e_2& e_2^2 &... &e_2^m\\ ...& & & & \\ 1& e_m& e_m^2 &... &e_m^m \end{pmatrix}=\begin{pmatrix} 1& 0& 0 &... &0 \\ 0& 1& 0 &... &0 \\ 0& 0& 1 &... &0 \\ ...& & & & \\ 0& 0& 0 &... &1 \end{pmatrix}=\begin{pmatrix} \delta _{00}& \delta _{01}& \delta _{02} &... &\delta _{0m} \\ \delta _{10}& \delta _{11}& \delta _{12} &... &\delta _{1m} \\ \delta _{20}& \delta _{21}& \delta _{22} &... &\delta _{2m} \\ ...& & & & \\ \delta _{m0}& \delta _{m1}& \delta _{m2} &... &\delta _{mm} \end{pmatrix} AA1=a00a10a20...am0a01a11a21am1a02a12a22am2............a0ma1ma2mamm111...1e0e1e2eme02e12e22em2............e0me1me2memm=100...001000010............0001=δ00δ10δ20...δm0δ01δ11δ21δm1δ02δ12δ22δm2............δ0mδ1mδ2mδmm

上面公式中, e j e_j ej为challenge值,有:
δ h i = ∑ j = 0 m a h j e j i \delta _{hi}=\sum_{j=0}^{m}a_{hj}e_j^i δhi=j=0mahjeji

h = = i h==i h==i时,有 δ h i = 1 \delta _{hi}=1 δhi=1;当 h ! = i h!=i h!=i时,有 δ h i = 0 \delta _{hi}=0 δhi=0。也可称 δ h i \delta _{hi} δhi为Kronecker delta函数。

基于 δ h i \delta _{hi} δhi的特性,有:
C h = ∑ i = 0 m δ h i C i C_h=\sum_{i=0}^{m}\delta _{hi}C_i Ch=i=0mδhiCi
⇔ C h = ∑ i = 0 m δ h i C i = ∑ i = 0 m ( ∑ j = 0 m a h j e j i ) C i \Leftrightarrow C_h=\sum_{i=0}^{m}\delta _{hi}C_i=\sum_{i=0}^{m}(\sum_{j=0}^{m}a_{hj}e_j^i)C_i Ch=i=0mδhiCi=i=0m(j=0mahjeji)Ci
⇔ 根 据 加 法 交 换 律 有 : C h = ∑ i = 0 m ( ∑ j = 0 m a h j e j i ) C i = ∑ j = 0 m a h j ( ∑ i = 0 m e j i C i ) \Leftrightarrow 根据加法交换律有: \quad C_h=\sum_{i=0}^{m}(\sum_{j=0}^{m}a_{hj}e_j^i)C_i=\sum_{j=0}^{m}a_{hj}(\sum_{i=0}^{m}e_j^iC_i) :Ch=i=0m(j=0mahjeji)Ci=j=0mahj(i=0mejiCi)
∵ C i = r i H + x ⃗ i G ⃗ , z ⃗ j = ∑ i = 0 m e j i x ⃗ i , s j = ∑ i = 0 m e j i r i , 以 及 加 法 结 合 律 \because C_i=r_iH+\vec x_i\vec G, \quad \vec z_j=\sum_{i=0}^{m}e_j^i\vec x_i, \quad s_j=\sum_{i=0}^{m}e_j^ir_i, \quad 以及加法结合律 Ci=riH+x iG ,z j=i=0mejix i,sj=i=0mejiri,
∴ C h = ∑ j = 0 m a h j ( ∑ i = 0 m e j i ( r i H + x ⃗ i G ⃗ ) ) = ∑ j = 0 m a h j ( ∑ i = 0 m e j i r i H ) + ∑ j = 0 m a h j ( ∑ i = 0 m e j i x ⃗ i G ⃗ ) = ∑ j = 0 m a h j s j H + ∑ j = 0 m a h j z ⃗ j G ⃗ \therefore C_h=\sum_{j=0}^{m}a_{hj}(\sum_{i=0}^{m}e_j^i(r_iH+\vec x_i\vec G))=\sum_{j=0}^{m}a_{hj}(\sum_{i=0}^{m}e_j^ir_iH)+\sum_{j=0}^{m}a_{hj}(\sum_{i=0}^{m}e_j^i\vec x_i\vec G)=\sum_{j=0}^{m}a_{hj}s_jH+\sum_{j=0}^{m}a_{hj}\vec z_j\vec G Ch=j=0mahj(i=0meji(riH+x iG ))=j=0mahj(i=0mejiriH)+j=0mahj(i=0mejix iG )=j=0mahjsjH+j=0mahjz jG
⇒ C h \Rightarrow C_h Chis a commitment to ∑ j = 0 m a h j z ⃗ j \sum_{j=0}^{m}a_{hj}\vec z_j j=0mahjz j with randomness ∑ j = 0 m a h j s j \sum_{j=0}^{m}a_{hj}s_j j=0mahjsj
∵ C h = r h H + x ⃗ h G ⃗ , 以 及 有 且 仅 有 一 个 值 对 应 一 个 c o m m i t m e n t \because C_h=r_hH+\vec x_h\vec G,\quad以及有且仅有一个值对应一个commitment Ch=rhH+x hG commitment
⇒ x ⃗ h = ∑ j = 0 m a h j z ⃗ j \Rightarrow \vec x_h=\sum_{j=0}^{m}a_{hj}\vec z_j x h=j=0mahjz j

以上公式推导可知,当有m+1个不同的方程式时,可以通过 ( z ⃗ 0 , z ⃗ 1 , z ⃗ 2 , . . . , z ⃗ m ) (\vec z_0, \vec z_1, \vec z_2,...,\vec z_m) (z 0,z 1,z 2,...,z m)一一对应的提取出所有的witness向量值 ( x ⃗ 0 , x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ m ) (\vec x_0, \vec x_1, \vec x_2,...,\vec x_m) (x 0,x 1,x 2,...,x m)

通过本算法,根据proof信息,可提取witness信息,且为唯一解,即保证了“knowledge-soundness”。由于解的唯一性,当Prover不知道解的情况下,无法提供可验证通过的proof。

3.2 Polynomial Interpolation多项式插值

Z = A − 1 X = ( 1 e 0 e 0 2 . . . e 0 m 1 e 1 e 1 2 . . . e 1 m 1 e 2 e 2 2 . . . e 2 m . . . 1 e m e m 2 . . . e m m ) ( x ⃗ 0 x ⃗ 1 x ⃗ 2 . . . x ⃗ m ) = ( ∑ i = 0 m e 0 i x ⃗ i ∑ i = 0 m e 1 i x ⃗ i ∑ i = 0 m e 2 i x ⃗ i . . . ∑ i = 0 m e m i x ⃗ i ) = ( z ⃗ 0 z ⃗ 1 z ⃗ 2 . . . z ⃗ m ) Z=A^{-1}X=\begin{pmatrix} 1& e_0& e_0^2 &... &e_0^m \\ 1& e_1& e_1^2 &... &e_1^m\\ 1& e_2& e_2^2 &... &e_2^m\\ ...& & & & \\ 1& e_m& e_m^2 &... &e_m^m \end{pmatrix}\begin{pmatrix} \vec x_0\\ \vec x_1\\ \vec x_2\\ ... \\ \vec x_m \end{pmatrix}=\begin{pmatrix} \sum_{i=0}^{m}e_0^i\vec x_i\\ \sum_{i=0}^{m}e_1^i\vec x_i\\ \sum_{i=0}^{m}e_2^i\vec x_i\\ ... \\ \sum_{i=0}^{m}e_m^i\vec x_i \end{pmatrix}=\begin{pmatrix} \vec z_0\\ \vec z_1\\ \vec z_2\\ ... \\ \vec z_m \end{pmatrix} Z=A1X=111...1e0e1e2eme02e12e22em2............e0me1me2memmx 0x 1x 2...x m=i=0me0ix ii=0me1ix ii=0me2ix i...i=0memix i=z 0z 1z 2...z m
以上公式,可抽象为一个多项式,该多项式的变量为e,系数分别为 x ⃗ 0 , x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ m \vec x_0, \vec x_1, \vec x_2,...,\vec x_m x 0,x 1,x 2,...,x m
Z ( e ) = x ⃗ 0 + x ⃗ 1 e + x ⃗ 2 e 2 + . . . + x ⃗ m e m Z(e)=\vec x_0+\vec x_1e+\vec x_2e^2+...+\vec x_me^m Z(e)=x 0+x 1e+x 2e2+...+x mem

Z ( e ) Z(e) Z(e)多项式的变量 e e e分别取m+1不同的值 e 0 , e 1 , e 2 , . . . , e m e_0,e_1, e_2,...,e_m e0,e1,e2,...,em,可通过Lagrange interpolation来唯一确定 Z ( e ) Z(e) Z(e)多项式的系数 x ⃗ 0 , x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ m \vec x_0, \vec x_1, \vec x_2,...,\vec x_m x 0,x 1,x 2,...,x m

参考资料:
[1] http://www0.cs.ucl.ac.uk/staff/J.Groth/MatrixZK.pdf
[2] https://joinmarket.me/static/FromZK2BPs_v1.pdf

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值