python 图片中的表格识别

本文介绍了使用Python进行表格图片内容识别的过程,包括图像分割、聚焦、大图片和小图片的识别,以及结果输出。主要步骤包括:图像二值化、膨胀腐蚀处理、单元格裁剪、模板匹配和CNN字符识别。在实际操作中,遇到了表格边线颜色浅和字符分割错误等问题,提出了相应的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

表格图片的内容识别

接到个任务需要将几万张带表格的图片转换成结构化数据。

1. 大步骤

最终算是完成任务,但是识别率上还有一点问题,人工再过一下,还是蛮快的。先说一下大的步骤:

  1. 分割单元格。将图片中的表格全部定位出来,然后按单元格裁剪成一个个小图片,以便后续分析及操作;
  2. 聚焦。其实就是将单元格中的文本区域裁剪出来,将多余的空白去掉;
  3. 大图片的识别。对于大图片用图像相似性的算法(phash+汉明距离)做识别;
  4. 小图片的识别。对于小图片,做字符分割,然后用NN做分类识别;
  5. 识别结果输出到txt;
  6. txt输出到excel。将全部txt按照目标表格的格式,解析输出到excel。

1.1 分割单元格

既然只关心表格区域,所以第一步先将各个单元格拆分出来,截取成一个个小图片。尝试用图像的膨胀、腐蚀来定位表格区域,图像处理包skimage,最后算是定位出了表格区域,也分割出了各个单元格图片,其中部分中间过程的图片如下:
这里写图片描述

分割单元格这一块的基本流程是:

  1. 读取图像;
  2. 二值化处理;
  3. 横向、纵向的膨胀、腐蚀操作,得到横线图img_row和竖线图img_col;
  4. 得到点图,img_row + img_col=img_dot;
  5. 得到线图,img_row × img_col=img_line(线图只是拿来看看的,后续没有用到);
  6. 浓缩点团到单个像素;
  7. 开始遍历各行的点,将各个单元格从二值图像上裁剪出来,保存到temp文件夹。

参考资料:

  1. OpenCV-检测并提取表格 - CSDN博客
  2. python数字图像处理(1):环境安装与配置 - denny402 - 博客园

1.1.1 读取图像、二值化

import skimage
# 读取图片,并转灰度图
img=io.imread(imgFilePath,True)
#二值化
bi_th=0.81
img[img<=bi_th]=0
img[img>bi_th]=1

1.1.2 膨胀、腐蚀操作

# 膨胀腐蚀操作
def dil2ero(img,selem):
    img=morphology.dilation(img,selem)
    imgres=morphology.erosion(img,selem)
    return imgres

# 求图像中的横线和竖线
rows,cols=img.shape
scale=80

col_selem=morphology.rectangle(cols//scale,1)
img_cols=dil2ero(img,col_selem)

row_selem=morphology.rectangle(1,rows//scale)
img_rows=dil2ero(img,row_selem)

1.1.3 得到点图、线图

# 线图
img_line=img_cols*img_rows
# 点图
img_dot=img_cols+img_rows_temp
img_dot[img_dot>0]=1
img_dot=clearEdge(img_dot,3)

1.1.4 浓缩点为单个像素

# 收缩点团为单像素点(3×3)
def isolate(img):
    idx=np.argwhere(img<1)
    rows,cols=img.shape
    
    for i in range(idx.shape[0]):
        c_row=idx[i,0]
        c_col=idx[i,1]
        if c_col+1<cols and c_row+1<rows:
            img[c_row,c_col+1]=1
            img[c_row+1,c_col]=1
            img[c_row+1,c_col+1]=1
        if c_col+2<cols 
<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马克布克打字机

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值