Gradient Descent

转载:http://www.codelast.com/

最速下降法(又称梯度法,或Steepest Descent),是无约束最优化领域中最简单的算法,单独就这种算法来看,属于早就“过时”了的一种算法。但是,它的理念是其他某些算法的组成部分,或者说是在其他某些算法中,也有最速下降法的“影子”。因此,我们还是有必要学习一下的。
我很久以前已经写过一篇关于最速下降法的文章了,但是这里我还打算再写一篇,提供更多一些信息,让大家可以从更简单生动的方面去理解它。

『1』名字释义
最速下降法只使用目标函数的一阶导数信息——从“梯度法”这个名字也可见一斑。并且,它的本意是取目标函数值“最快下降”的方向作为搜索方向。于是我们就想知道这个问题的答案:沿什么方向,目标函数  f(x)  的值下降最快呢?

『2』函数值下降最快的方向
先说结论:沿负梯度方向  d=gk ,函数值下降最快。
下面就来推导一下。
将目标函数 f(x) 在点 xk 处泰勒展开(这是我们惯用的“伎俩”了)——
f(x)=f(xk)+αgTkdk+o(α)
高阶无穷小 o(α) 可忽略,由于我们定义了步长 α>0 ,因此,当 gTkdk<0 时, f(x)<f(xk) ,即函数值是下降的。此时 dk 就是一个下降方向。
但是 dk 具体等于什么的时候,可使目标函数值下降最快呢?
文章来源:http://www.codelast.com/
Cauchy-Schwartz不等式(柯西-许瓦兹不等式)可得:
dTkgkdkgk
当且仅当 dk=gk 时,等号成立, dTkgk 最大(>0)。
所以 dk=gk 时, dTkgk 最小(<0), f(x) 下降量最大。
所以 gk 下降方向。

『3』缺点
它真的“最快速”吗?答案是否定的。
事实是,它只在局部范围内具有“最速”性质。
对整体求解过程而言,它的下降非常缓慢。

『4』感受一下它是如何“慢”的
先来看一幅图(直接从维基百科上弄过来的,感谢Wiki):

文章来源:http://www.codelast.com/
这幅图表示的是对一个目标函数的寻优过程,图中锯齿状的路线就是寻优路线在二维平面上的投影。
这个函数的表达式是:
f(x1,x2)=(1x1)2+100(x2x12)2
它叫做Rosenbrock function(罗森布罗克方程),是个非凸函数,在最优化领域,它通常被用来作为一个最优化算法的performance test函数。
我们来看一看它在三维空间中的图形:

Rosenbrock function 3D
文章来源: http://www.codelast.com/
它的全局最优点位于一个长长的、狭窄的、抛物线形状的、扁平的“山谷”中。
找到“山谷”并不难,难的是收敛到全局最优解(全局最优解在 (1,1) 处)。
正所谓: 世界上最遥远的距离,不是你离我千山万水,而是你就在我眼前,我却要跨越千万步,才能找到你
文章来源: http://www.codelast.com/
我们再来看另一个目标函数 f(x,y)=sin(12x214y2+3)cos(2x+1ey) 的寻优过程:
和前面的Rosenbrock function一样,它的寻优过程也是“锯齿状”的。
它在三维空间中的图形是这样的:
总而言之就是:当目标函数的等值线接近于圆(球)时,下降较快;等值线类似于扁长的椭球时,一开始快,后来很慢。
文章来源: http://www.codelast.com/
『5』为什么“慢”的分析
上面花花绿绿的图确实很好看,我们看到了那些寻优过程有多么“惨烈”——太艰辛了不是么?
但不能光看热闹,还要分析一下——为什么会这样呢?
精确line search满足的一阶必要条件,得:
f(xk+αkdk)Tdk=0 ,即 gTk+1dk=0
故由最速下降法的 dk=gk 得:
gTk+1dk=gTk+1(gk)=gTk+1gk=dTk+1dk=0 dTk+1dk=0
即:相邻两次的搜索方向是相互直交的(投影到二维平面上,就是锯齿形状了)。


对精确的line search(线搜索),有一个重要的定理:

f(xk+αkdk)Tdk=0


这个定理表明,当前点在 dk 方向上移动到的那一点( xk+αkdk )处的梯度,与当前点的搜索方向 dk 的点积为零。

其中, αk 是称之为“步长”的一个实数,它是通过line search算法求出来的。

为什么会有这样的结论?我们来看看。
对每一个line search过程来说,搜索方向 dk 已经已经是确定的了(在最优化算法中,如何找出一个合适的 dk 不是line search干的事情)。所以,在一个确定的 dk 上,要找到一个合适的 αk ,使得 ϕ(α)=f(xk+αdk) 这个函数满足 f(xk+αkdk)<f(xk) ,这就是line search的目的。说白了,就是要找到 αk 使 ϕ(α) 的函数函数值变小。
文章来源:http://www.codelast.com/
但是,要小到什么程度呢?假设小到有可能的“最小”,即:
ϕ(αk)=f(xk+αkdk)=minα>0f(xk+αdk)=minα>0ϕ(α)
那么,我们称这样的line search为“精确的line search”——你看,这名字好贴切:我们精确地找到了函数值最小的那个点。

既然 xk+αkdk 是函数值最小的那个点,那么,在该点处的一阶导数(即梯度)为零,所以我们对上式求导( α 是自变量, xk dk 为常量):
ϕ(αk)=[f(xk+αkdk)](0+1dk)=[f(xk+αkdk)]dk=f(xk+αkdk)Tdk=0
这就是我们前面说的定理了。


注:(对于line search的理解)line search是在求最佳步长,可以看出,当xk处于极值点时,其梯度为0,这时候就会收敛到这点,
而对于凸函数,只存在一个极值点,为了满足 f(xk+αkdk)Tdk=0,就会找到 f(xk+αkdk) = 0 的这个点,也就是极值点,
所以最佳步长的解就会一次找出极值点, 以 f(x) = x^2 为例,从 x = 1 计算,按照梯度方向,可以得到 步长 = 1/2 , 也就是一次就到了 x = 0 的地方。


文章来源: http://www.codelast.com/
如果你非要问,为什么 dTk+1dk=0 就表明这两个向量是相互直交的?那么我就耐心地再解释一下:
由两向量夹角的公式:

=>   θ=π2
两向量夹角为90度,因此它们直交。

『6』优点
这个被我们说得一无是处的最速下降法真的就那么糟糕吗?其实它还是有优点的:程序简单,计算量小;并且对初始点没有特别的要求;此外,许多算法的初始/再开始方向都是最速下降方向(即负梯度方向)。
文章来源:http://www.codelast.com/
『7』收敛性及收敛速度
最速下降法具有整体收敛性——对初始点没有特殊要求。
采用精确线搜索的最速下降法的收敛速度:线性。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值