TLD算法一开始做的工作就是特征选择 如何选则呢 这个我在其中一篇文献找到了答案.
作者也只是做了一个比较,采用的方法是一种比较笨的方法 如何找的一个优化 这个可以作为一个比较好的思路 我现在主要是时间有限 如果哪位同学有什么想法或毅力做这件事 我希望告诉我啊!
理解这个特征选择需要有一定的数学基础,
1 贝叶斯概率模型
2 mean-shift 算法 用于跟踪
3 图像直方图
4 fisher 判别法
如果对这几个方面都比较了解 我觉得你就可以看懂我在说什么了。
作者主要是优化一个表达式
f=w1*R+w2*G+w3*B
一般的图像处理在对这个表达式采用默认值,但是在图像跟踪如果能合理选择这几个权重会使图像的背景和物品很好的区分开来!
(由于本人太懒要想具体指导如何得到这几个值,过几天在写 希望大家关注博客,多多留言激发我的热情。呵呵呵)
ps:
推荐几个上面数学知识的好博文
1.http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/(贝叶斯)
2.http://download.csdn.net/detail/muzi198783/4135834(mean-shift,fisher)
3关于图像直方图 大家看看数字图像处理的书就好了