概率论【随机变量的数字特征(上)】--猴博士爱讲课

本文介绍了如何计算离散型和连续型随机变量的期望E(X),以及如何求解函数Y=g(x)的期望E(Y)。同时,详细讲解了方差D(X)的计算,包括公式D(X)=E(X^2)-[E(X)^2]的应用。文章提供了多个例题,涉及二项分布和泊松分布等常见概率分布的期望与方差计算。
摘要由CSDN通过智能技术生成

7.随机变量的数字特征(上)

1/6 求离散型的期望E(X)

离散型随机变量的期望

image-20230109225311989

image-20230109225415127

2/6 求连续型的期望E(X)

连续型随机变量的期望

image-20230109225457864

image-20230109225600460

3/6 已知Y=g(x),求E(Y)

连续型随机变量函数的期望

image-20230109225647869

例题1(离散型):

image-20230109225756957

例题2(连续型):

image-20230109225825275

4/6 求方差D(X)

记住两个公式(主要是第二个D(x)=E(x2)-[E(x)2]

image-20230109225926315

image-20230109225946809

例题1(离散型):

image-20230109230114976

例题2(连续型):

image-20230109230128142

5/6 根据E(x)、D(x)的性质进行复杂运算

image-20230109230217926

例题:

image-20230109230254448

6/6 E(x)、D(x)与各种分布的综合题

各种分布的公式:

image-20230109230217926

image-20230109230328078

例题1:(二项分布)

image-20211228144542009

例题2:(泊松分布)

image-20211228144647017

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值