- 博客(5)
- 收藏
- 关注
原创 《统计学习方法》的理论与实践——逻辑斯谛回归与最大熵模型
第六章——逻辑斯谛回归和最大熵模型前言一、逻辑斯谛回归模型1.1 逻辑斯谛分布1.2 二项逻辑斯谛回归模型1.3 模型参数估计 前言 逻辑斯谛回归是统计学习中的经典分类方法。最大熵是概率模型学习的一个准则,将其推广到分类问题得到最大熵模型。逻辑斯谛回归模型与最大熵模型都属于对数线性模型。 一、逻辑斯谛回归模型 1.1 逻辑斯谛分布 ***定义6.1(逻辑斯谛分布)*** 设XXX是连续随机变量,XXX服从逻辑斯谛分布是指XXX具有下列分布函数和密度函数: F(x)=P(X≤x)=11+e−(x−μ
2021-04-17 16:28:17 121
原创 《统计学习方法》的理论与实践——决策树
第五章——决策树前言一、决策树模型与学习1.1 决策树模型1.2 决策树与if-then规则1.3决策树与条件概率分布1.4 决策树学习二、特征选择2.1 特征选择问题2.2 信息增益二、使用步骤1.引入库 前言 这章是一个难点。决策树(decision tree)是一种基本的分类与回归方法。它是树形结构的,表示决策树的基于特征对实例进行分类的过程。主要优点是模型具有可读性,分类速度快。决策树学习通常包括三个步骤:特征选择、决策树的生成和决策树的修剪。 一、决策树模型与学习 1.1 决策树模型 定义
2021-04-15 15:57:08 329
原创 《统计学习方法》的理论与实践——朴素贝叶斯法
第四章 朴素贝叶斯法前言一、朴素贝叶斯法的学习与分类1.1 基本方法1.2 后验概率最大化的含义二、朴素贝叶斯法的参数估计2.1 极大似然估计2.2 学习与分类算法总结 前言 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征独立假设学习输入输出的联合概率分布;然后基于此模型,对给定的输入xxx,利用贝叶斯定理求出后验概率最大的输出yyy。 一、朴素贝叶斯法的学习与分类 1.1 基本方法 设输入空间X∈Rn\mathcal{X} \in \mathbf{R^
2021-04-12 16:40:37 88
原创 《统计学习方法》的理论与实践——k近邻法
第三章——k近邻法前言一、k近邻算法二、k近邻模型2.1 距离度量2.2 kkk值的选择2.3 分类决策规则三、kkk近邻法的实现:kdkdkd树3.1 构造kdkdkd树 前言 k近邻算法(k-nearest neighbor, k-NN)是一种基本的分类与回归方法,它不具有显示的学习过程,实际上是利用训练数据集对特征向量空间进行划分,并作为分类的模型。个人觉得就书中提到的k近邻算法适用面不是很广阔,当然在很多情况下特别是数据量超级大的时候也不失为一种可行的方法。 一、k近邻算法 k近邻算法简
2021-04-11 19:07:44 133
原创 《统计学习方法》的理论与实践——感知机
**统计学习方法 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 例如:第一章 Python 机器学习入门之pandas的使用 第二章 感知机前言一、感知机模型二、感知机学习策略2.1 数据集的线性可分性2.2. 感知机学习策略三、感知机学习算法3.1 感知机学习算法的原始形式总结 前言 感知机(perceptron)是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的超平面,属于判别模型。感知
2021-04-11 13:45:00 134 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人