题意
简单来说:
每天对餐巾数量有一定的要求,用完的变成脏的。脏的可以拿去两个店洗,分别花费
a
a
a天、
b
b
b钱;
c
c
c天、
d
d
d钱。可以留到之后洗,或者买新的花费
p
p
p
求最小花费
题解
显然费用流,如何转换呢?
首先最大流必须是合法情况,那么一定餐巾数量够。
那么如何体现回收利用呢?就是流量共用。
每天设置两个点晚上和早上。
早上需要收到
x
x
x个餐巾,连向汇点,最大流就是符合情况的。
晚上得到
x
x
x个脏餐巾。
对于滞后洗的操作,第
i
i
i个晚上连向
i
+
1
i+1
i+1个晚上即可。
流量共用的操作体现在洗餐巾,你花费
b
b
b或者
d
d
d给出一定流量到
a
a
a或
c
c
c天之后那天。
除此之外买餐巾的操作等价于源点连向早上。即可。
#include<bits/stdc++.h>
#define FOR(i,l,r) for(int i=l;i<=r;i++)
using namespace std;
#define ls (rt<<1)
#define rs (rt<<1|1)
#define inf 0x3f3f3f3f
typedef long long ll;
const int maxn = 2e4+200;
int A[maxn];
struct Edge{
int from,to;
ll cap,flow,cost;
};
struct MCMF{
int n,tmp,s,t;
vector<Edge>edges;
vector<int>G[maxn];
int inq[maxn];
ll d[maxn];//spfa
int p[maxn];//上一条弧便于回溯
ll a[maxn];//最小改进量
void init(int n,int s,int t){
this->n=n,this->s=s,this->t=t;
edges.clear();
for(int i=1;i<=n;i++)G[i].clear();
}
void AddEdge(int from,int to,ll cap,ll cost){
edges.push_back((Edge){from,to,cap,0,cost});
edges.push_back((Edge){to,from,0,0,-cost});
tmp=edges.size();
G[from].push_back(tmp-2);
G[to].push_back(tmp-1);
}
bool spfa(int s,int t,ll& flow,ll& cost){
for(int i=0;i<=n;i++)d[i]=inf;
memset(inq,0,sizeof(inq));
d[s]=0,inq[s]=1,p[s]=0,a[s]=inf;
queue<int>Q;
Q.push(s);
while(!Q.empty()){
int u=Q.front();Q.pop();
inq[u]=0;
for(int i=0;i<G[u].size();i++){
Edge& e=edges[G[u][i]];
if(e.cap>e.flow&&d[e.to]>d[u]+e.cost){
d[e.to]=d[u]+e.cost;//松弛
p[e.to]=G[u][i];//记录上一条弧
a[e.to]=min(a[u],e.cap-e.flow);//最小可改进量
if(!inq[e.to]){Q.push(e.to);inq[e.to]=1;}//入队
}
}
}
if(d[t]==inf)return false;//说明不连通了。
flow+=a[t];//如果固定流量的话,可以在flow+a>=k的时候只增广到k,然后终止程序
cost+=d[t]*a[t];
int u=t;
while(u!=s){
edges[p[u]].flow+=a[t];
edges[p[u]^1].flow-=a[t];
u=edges[p[u]].from;
}
return true;
}
ll Mincost(){//绝对不能有负权圈,否则连续最短路的数学证明失效
ll flow=0,cost=0;
while(spfa(s,t,flow,cost));
return cost;
}
}mf;
int main(){
int n;cin>>n;
mf.init(2*n+2,2*n+1,2*n+2);
FOR(i,1,n)scanf("%d",&A[i]);
int p,a,b,c,d;
scanf("%d%d%d%d%d",&p,&a,&b,&c,&d);
FOR(i,1,n){
mf.AddEdge(2*n+1,i,A[i],0);
mf.AddEdge(n+i,2*n+2,A[i],0);
if(i<n)mf.AddEdge(i,i+1,inf,0);
mf.AddEdge(2*n+1,n+i,inf,p);
if(i+a<=n)mf.AddEdge(i,n+i+a,inf,b);
if(i+c<=n)mf.AddEdge(i,n+i+c,inf,d);
}
cout<<mf.Mincost()<<endl;
}