中国剩余定理

参考大神

问题

对于一系列 x   m o d   m i = a i x\ mod\ m_i = a_i x mod mi=ai,求解最小的 x x x

解法

首先要保证 m i m_i mi互质, m u l mul mul表示 m i m_i mi的乘积, M i = m u l m i M_i=\frac{mul}{m_i} Mi=mimul M i ∗ t i = 1 ( m o d   m i ) M_i*t_i=1(mod\ m_i) Miti=1(mod mi)

从而可以构造出一组解, x 0 = ∑ a i M i t i x_0=\sum a_iM_it_i x0=aiMiti,通解即 x = x 0 + k ∗ m u l x=x_0+k*mul x=x0+kmul
所以最小即 x 0 % m u l x_0\%mul x0%mul

这里 x 0 x_0 x0 M i t i M_it_i Miti不是 1 1 1,因为不处于 m i m_i mi的剩余系了,而是实数系。

求逆元的时候,我们用的是扩展欧几里得。相关证明在参考处。

#include<bits/stdc++.h>
#define FOR(i,a,b) for(int i=a;i<=b;i++)
#define inf 0x3f3f3f3f3f3f3f3f
typedef long long ll;
using namespace std;

const int N = 2e5+500;
const int maxn=2e5+500;
const int mod = 1000007;

ll a[20],m[20],Mi[20];//a是余数,m是模数

void exgcd(ll a,ll b,ll &x,ll &y){
    if(b==0){x=1,y=0;return ;}
    exgcd(b,a%b,x,y);
    ll z=x;x=y,y=z-y*(a/b);
}

void get_a(){

}

ll crt(int n){
    ll mul=1,ret=0;
    for(int i=1;i<=n;i++)mul*=m[i];
    for(int i=1;i<=n;i++){
        Mi[i]=mul/m[i];
        ll x=0,y=0;
        exgcd(Mi[i],m[i],x,y);
        ret+=a[i]*Mi[i]*(x<0?x+m[i]:x);
    }
    return ret%mul;
}

int main(){
    int n;cin>>n;
    FOR(i,1,n)scanf("%lld%lld",&m[i],&a[i]);
    ll ans=crt(n);
    cout<<ans<<endl;
}

应用

对存在逆元的非质数取模问题
模板如下:

ll a[2000],m[2000],Mi[2000];//a是余数,m是模数
bool ok=false;

void exgcd(ll a,ll b,ll &x,ll &y){
    if(b==0){x=1,y=0;return ;}
    exgcd(b,a%b,x,y);
    ll z=x;x=y,y=z-y*(a/b);
}
//对于给定的x,对mi取模,再反解最小x,对P取模即对非质数取模方法。
void get_a(ll x,ll y){
    for(int i=1;i<=4;i++)a[i]=ls[i].Combination(x,y);
}

ll crt(int n){
    ll mul=1,ret=0;
    for(int i=1;i<=n;i++)mul*=m[i];
    for(int i=1;i<=n;i++){
        Mi[i]=mul/m[i];
        ll x=0,y=0;
        exgcd(Mi[i],m[i],x,y);
        ret+=a[i]*Mi[i]*(x<0?x+m[i]:x);
    }
    return ret%mul;
}

ll get(ll x,ll y){
    if(ok){
        return ls[0].Combination(x,y)%MOD;
    }
    else{
        get_a(x,y);
        return crt(4)%MOD;
    }
}

做法很简单,就是讲模数分解质因子。
这里不考虑质因子有次方的情况,然后对于每个因子取模得到一个值 a i a_i ai
即我们去求最小解 x x x 满足 x   m o d   m i =   a i x\ mod\ m_i=\ a_i x mod mi= ai

得到这个 x x x之后,对 P P P取模即是答案。
这份模板中 g e t _ a get\_a get_a函数就是取模的过程,因为这是组合数的模板,所以…懒得改了先。

例题——洛谷P4478 上学路线

题意

网格图,从 ( 0 , 0 ) (0,0) (0,0) ( n , m ) (n,m) (n,m),要求不走到某些点,多少种方案。
只能走右和上,这些点给出。

题解

不知道为什么没想出来。
首先 C ( n , m ) C(n,m) C(n,m)即是总方案,去掉那些走到那些点的方案。
枚举走了哪些点有点不太靠谱,但是枚举第一次走到哪个点是可行的。

d p [ i ] dp[i] dp[i]表示第一次到第 i i i个点的方案数
d p [ i ] = C ( x i + y i , x i ) − ∑ d p [ j ] ∗ C ( d i f x + d i f y , d i f x ) dp[i]=C(x_i+y_i,x_i)-\sum dp[j]*C(difx+dify,difx) dp[i]=C(xi+yi,xi)dp[j]C(difx+dify,difx)
即,总方案减去,枚举走到不该走的点的方案中走的第一个点,一旦走了这第一个点,其余怎么走都是不合法的,所以直接计算还差多少即可。
为了保证 d p dp dp的合法性,要事先进行排序,保证所有在 i i i左下的点 j j j < i <i <i

最后答案是 d p [ T + 1 ] dp[T+1] dp[T+1],因为总共是 T T T个关键点,而我们要走到终点。

其次就是取模问题,给的模数由于是非质数和质数,所以需要 c r t crt crt合并一下。

#include<bits/stdc++.h>
#define FOR(i,a,b) for(int i=a;i<=b;i++)
#define inf 0x3f3f3f3f3f3f3f3f
typedef long long ll;
using namespace std;
const int maxn=1e6+500;

ll N,M,MOD;
int T;

struct Lucas{
    ll ff[maxn+5],mod;
    void init(){
        ff[0]=1;
        FOR(i,1,maxn)ff[i]=(ff[i-1]*i)%mod;//处理P大小
    }
    ll gcd(ll a,ll b)
    {
        if(b==0)return a;
        else return gcd(b,a%b);
    }
    ll x,y;
    void Extended_gcd(ll a,ll b)
    {
        if(b==0)
        {
            x=1;
            y=0;
        }
        else
        {
            Extended_gcd(b,a%b);
            ll t=x;
            x=y;
            y=t-(a/b)*y;
        }
    }
    //计算不大的C(n,m)
    ll C(ll a,ll b)
    {
        if(b>a)return 0;
        b=(ff[a-b]*ff[b])%mod;
        a=ff[a];
        ll c=gcd(a,b);
        a/=c;b/=c;
        Extended_gcd(b,mod);
        x=(x+mod)%mod;
        x=(x*a)%mod;
        return x;
    }
    //Lucas定理
    ll Combination(ll n, ll m)
    {
        ll ans=1;
        ll a,b;
        while(m||n)
        {
            a=n%mod;
            b=m%mod;
            n/=mod;
            m/=mod;
            ans=(ans*C(a,b))%mod;
        }
        return ans;
    }
}ls[5];

ll a[2000],m[2000],Mi[2000];//a是余数,m是模数
bool ok=false;

void exgcd(ll a,ll b,ll &x,ll &y){
    if(b==0){x=1,y=0;return ;}
    exgcd(b,a%b,x,y);
    ll z=x;x=y,y=z-y*(a/b);
}
//对于给定的x,对mi取模,再反解最小x,对P取模即对非质数取模方法。
void get_a(ll x,ll y){
    for(int i=1;i<=4;i++)a[i]=ls[i].Combination(x,y);
}

ll crt(int n){
    ll mul=1,ret=0;
    for(int i=1;i<=n;i++)mul*=m[i];
    for(int i=1;i<=n;i++){
        Mi[i]=mul/m[i];
        ll x=0,y=0;
        exgcd(Mi[i],m[i],x,y);
        ret+=a[i]*Mi[i]*(x<0?x+m[i]:x);
    }
    return ret%mul;
}

ll get(ll x,ll y){
    if(ok){
        return ls[0].Combination(x,y)%MOD;
    }
    else{
        get_a(x,y);
        return crt(4)%MOD;
    }
}

ll dp[maxn];
struct node{ll x,y;}A[maxn];

int main(){
    cin>>N>>M>>T>>MOD;
//    scanf("%d%d%d%lld",&N,&M,&T,&MOD);
    ls[0].mod=1000003,m[1]=ls[1].mod=3,m[2]=ls[2].mod=5,m[3]=ls[3].mod=6793,m[4]=ls[4].mod=10007;
    for(int i=0;i<=4;i++)ls[i].init();
    if(MOD==1000003)ok=true;
    for(int i=1;i<=T;i++)scanf("%d%d",&A[i].x,&A[i].y);
    T++,A[T].x=N,A[T].y=M;
    sort(A+1,A+1+T,[](node a,node b){
        if(a.x==b.x)return a.y<b.y;
        return a.x<b.x;
    });
    for(int i=1;i<=T;i++){
        ll ret=get(A[i].x+A[i].y,A[i].x);
        for(int j=1;j<i;j++){
            if(A[i].x>=A[j].x&&A[i].y>=A[j].y)ret=((ret-dp[j]*get(A[i].x-A[j].x+A[i].y-A[j].y,A[i].x-A[j].x))%MOD+MOD)%MOD;
        }
        dp[i]=ret%MOD;
    }
    cout<<dp[T];
}

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值