浅谈数论分块

这里只是最简单的解说和证明。

数论分块常用于解决一类问题: ∑ i = 1 X X i \sum_{i=1}^{X}\frac{X}{i} i=1XiX
用数论分块解决的同式:
首先我们要了解 X i \frac{X}{i} iX最多只有 2 N 2\sqrt{N} 2N 个不同的值。
所以数列呈现出来的样子是这样的: y z c b b d d d d d yzcbbddddd yzcbbddddd
我们只要求出来对应相同值的区间即可。

解决方案:枚举左端点和右端点。右端点等于 N N l \frac{N}{\frac{N}{l}} lNN。具体证明不提(目前我也不会。

所以模板是这样的:

    for(int l=1,r;l<=n;l=r+1){
        r=n/(n/l);
        ans+=(n/l)*(r-l+1);
    }

如果我们要求 ∑ i = 1 X X i A [ i ] \sum_{i=1}^{X}\frac{X}{i}A[i] i=1XiXA[i]呢?
类似做法:
因为从上面我们可以发现序列是不断地连续的,我们可以计算连续区间。
为了减少常数,记录上一个右端点结果。(用树状数组访问前缀和。

    ll ans=0;
    ll xx=0,yy;
    for(int l=1,r;l<=n;l=r+1){
        r=n/(n/l);
        yy=que(r);
        ans+=(yy-xx)*(n/l);
        xx=yy;
        //cout<<l<<" "<<r<<" "<<que(r)-que(l-1)<<endl;
    }

但正解是这样的:

ans+=que(n/l)*(r-l+1);

怎么理解呢?
首先我们知道贡献是这样的:
对于 n = 10 n=10 n=10
10 a 1 + 5 a 2 + 3 a 3 + 2 a 4 + 2 a 5 + 1 a 6....10 10a1+5a2+3a3+2a4+2a5+1a6....10 10a1+5a2+3a3+2a4+2a5+1a6....10
如果对于第 i i i个值的贡献,显然是 N i \frac{N}{i} iN
而第 N i \frac{N}{i} iN个值的贡献是 i i i
i i i是某个块最左端,那么 N i \frac{N}{i} iN必然是另一个块的最右端,这是因为整除的原因。
如果我们对后者的贡献求前缀和,起到的作用就是对前者的贡献 + 1 +1 +1,再往后去前缀和取不到第 i i i位,而往前的都能取到。
那么对于第 i i i位最后计算的总贡献就是 N i \frac{N}{i} iN
从而得证。

感性理解就是:它把每个点的贡献拆分多步让每个值分摊。

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值