方程就是二叉树森林?遗传算法从数据中直接发现未知控制方程和物理机理

研究团队提出了一种基于符号数学的遗传算法SGA-PDE,能从高维非线性数据中直接挖掘控制方程,包括复杂的结构,如Burgers、KdV和Chafee-Infante方程。这种方法不依赖于先验知识,填补了复杂结构控制方程挖掘的空白。
摘要由CSDN通过智能技术生成

机器之心专栏

机器之心编辑部

偏微分方程是领域知识的一种简洁且易于理解的表示形式,对于加深人类对物理世界的认知以及预测未来变化至关重要。然而,现实世界的系统过于紊乱和无规律,控制方程往往具有复杂的结构,难以从机理模型中直接推导获得。

研究者们希望通过机器学习方法,直接从高维非线性数据中自动挖掘最有价值和最重要的内在规律(即挖掘出问题背后以 PDE 为主的控制方程),实现自动知识发现。

近日,东方理工、华盛顿大学、瑞莱智慧和北京大学等机构的研究团队提出了一种基于符号数学的遗传算法 SGA-PDE,构建了开放的候选集,可以从数据中直接挖掘任意形式的控制方程。

实验表明,SGA-PDE 不但可以从数据中挖掘到 Burgers 方程(具有交互项),Korteweg–de Vries 方程(KdV,具有高阶导数项),和 Chafee-Infante 方程(具有指数项和导数项),而且还成功挖掘到粘性重力流问题中的具有复合函数的控制方程,以及具有分式结构的方程,而后两者是此前方法难以发现的。SGA-PDE 不依赖关于方程形式的先验知识,填补了复杂结构控制方程挖掘问题的空白。该模型无需提前给定方程候选集,利于自动知识发现算法在未知科学问题中的实际应用。

该研究以《Symbolic genetic algorithm for discovering open-form partial differential equations (SGA-PDE)》为题,于 6 月 1 日发表在 Physical Review Research 上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值