快速幂的目的就是做到快速求幂,假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来时间复杂度是O(b)也即是O(n)级别,快速幂能做到O(logn),快了好多好多。它的原理如下:
假设我们要求a^b,那么其实b是可以拆成二进制的,该二进制数第i位的权为2^(i-1),例如当b==11时
a^11=a^(2^0+2^1+2^3)
11的二进制是1011,11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1,因此,我们将a¹¹转化为算 a^(2^0)*a^(2^1)*a^(2^3) ,看出来快的多了吧原来算11次,现在算三次,但是这三项貌似不好求的样子….不急,下面会有详细解释。
由于是二进制,很自然地想到用位运算这个强大的工具: & 和 >>
&运算通常用于二进制取位操作,例如一个数 & 1 的结果就是取二进制的最末位。还可以判断奇偶x&1==0为偶,x&1==1为奇。
>>运算比较单纯,二进制去掉最后一位。
现在已上边的式子为例:
int powx(int a,int b)
{
int ans=i,base=a;
while(b!=0)
{
if(b&1)
ans*=base;
base*=base;
b>>=1;
}
return ans;
}
代码很简单,但还是要理解。
解释级就自己当初不懂得:
base*=base;
这个是完全为了达到累乘的效果,例如上题,这个就相当于把a^11变成了a^(2^0),a^(2^1),a^(2^3);
另一种详细的解释:
其中要理解base*=base这一步,base*base==base^2,下一步再乘,就是base^2*base^2==base^4,然后同理 base^4*base4=base^8,,,,,see?是不是做到了base–>base^2–>base^4–>base^8–>base^16–>base^32…….指数正是 2^i 啊,再看上 面的例子,a¹¹= a^(2^0)*a^(2^1)*a^(2^3),这三项是不是完美解决了,,嗯,快速幂就是这样。