快速幂讲解

快速幂的目的就是做到快速求幂,假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来时间复杂度是O(b)也即是O(n)级别,快速幂能做到O(logn),快了好多好多。它的原理如下:

  假设我们要求a^b,那么其实b是可以拆成二进制的,该二进制数第i位的权为2^(i-1),例如当b==11时

                     a^11=a^(2^0+2^1+2^3)
  11的二进制是1011,11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1,因此,我们将a¹¹转化为算 a^(2^0)*a^(2^1)*a^(2^3) ,看出来快的多了吧原来算11次,现在算三次,但是这三项貌似不好求的样子….不急,下面会有详细解释。   
  由于是二进制,很自然地想到用位运算这个强大的工具: & 和 >>   
  &运算通常用于二进制取位操作,例如一个数 & 1 的结果就是取二进制的最末位。还可以判断奇偶x&1==0为偶,x&1==1为奇。  
  >>运算比较单纯,二进制去掉最后一位。
  现在已上边的式子为例:

int powx(int a,int b)
{
    int ans=i,base=a;
    while(b!=0)
    {
        if(b&1)
            ans*=base;
        base*=base;
        b>>=1;
    }
    return ans;
}

代码很简单,但还是要理解。
解释级就自己当初不懂得:

base*=base;

这个是完全为了达到累乘的效果,例如上题,这个就相当于把a^11变成了a^(2^0),a^(2^1),a^(2^3);
另一种详细的解释:
其中要理解base*=base这一步,base*base==base^2,下一步再乘,就是base^2*base^2==base^4,然后同理 base^4*base4=base^8,,,,,see?是不是做到了base–>base^2–>base^4–>base^8–>base^16–>base^32…….指数正是 2^i 啊,再看上 面的例子,a¹¹= a^(2^0)*a^(2^1)*a^(2^3),这三项是不是完美解决了,,嗯,快速幂就是这样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值