LeetCode C++ 199. Binary Tree Right Side View【Tree/DFS/BFS】中等

本文介绍了如何求解二叉树的右视图,提供了两种不同的解决方案:一种基于广度优先搜索(BFS),另一种采用深度优先搜索(DFS)。这两种方法都能有效地获取从顶部到底部按顺序排列的右侧节点值。通过层次遍历或根-右-左的访问顺序,实现了高效的时间和空间复杂度,并给出了对应的C++代码实现。在实际运行中,DFS方法在时间和内存使用上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.

Example:

Input: [1,2,3,null,5,null,4]
Output: [1, 3, 4]
Explanation:

   1            <---
 /   \
2     3         <---
 \     \
  5     4       <---

题意:给定一棵二叉树,想象站在它的右侧,按照从顶部到底部的顺序,返回从右侧能看到的节点值组成的列表。


思路1 BFS

广度优先搜索进行层次遍历,记录每层最后一个元素即可。代码如下:

class Solution {
public: 
    vector<int> rightSideView(TreeNode* root) {
        if (!root) return vector<int>(); 
        vector<int> vi;
        queue<TreeNode*> q;
        if (root) q.push(root);
        while (!q.empty()) { 
            int size = q.size(); 
            for (int i = 0; i < size; ++i) {
                TreeNode *t = q.front(); q.pop();
                if (i == size - 1) vi.push_back(t->val); //记录每层最后一个结点
                if (t->left) q.push(t->left);
                if (t->right) q.push(t->right);
            } 
        }
        return vi;  
    }
};

效率如下:

执行用时:4 ms, 在所有 C++ 提交中击败了81.63% 的用户
内存消耗:11.6 MB, 在所有 C++ 提交中击败了46.80% 的用户

从右往左遍历的代码如下:

class Solution {
public: 
    vector<int> rightSideView(TreeNode* root) {
        if (!root) return vector<int>(); 
        vector<int> vi;
        queue<TreeNode*> q;
        if (root) q.push(root);
        while (!q.empty()) { 
            int size = q.size(); 
            vi.push_back(q.front()->val); //记录每层最后一个结点
            while (size--) {
                TreeNode *t = q.front(); q.pop(); 
                if (t->right) q.push(t->right);
                if (t->left) q.push(t->left);
            } 
        }
        return vi;  
    }
};

思路2 DFS

按照根-右-左的顺序访问,可以保证每层都是最先访问最右边的结点。而普通的先序遍历正好相反,每层最先访问的是最左边的节点。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<int> ans;
    void dfs(TreeNode* root, int depth) {
        if (root) { 
            //根-右-左保证每层首先访问的都是最右边的结点
            //如果当前节点所在深度==ans.size(),说明该深度下当前节点是第一个被访问的节点,将当前节点加入res中。
            if (depth == ans.size()) ans.push_back(root->val);
            if (root->right) dfs(root->right, depth + 1);
            if (root->left) dfs(root->left, depth + 1);
        }
    }
    vector<int> rightSideView(TreeNode* root) {
        if (!root) return vector<int>();  
        dfs(root, 0);
        return ans;  
    }
};

效率如下:

执行用时:0 ms, 在所有 C++ 提交中击败了100.00% 的用户
内存消耗:11.5 MB, 在所有 C++ 提交中击败了87.62% 的用户
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值