【离散数学】数理逻辑 第一章 命题逻辑(4) 联结词的完备集

本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:

  • 离散数学及其应用 第七版 Discrete Mathematics and Its Applications 7th ,作者是 Kenneth H.Rosen
  • 离散数学 第二版,武波等编著,西安电子科技大学出版社

之前学习了五个联结词 ¬ , ∨ , ∧ , → , ↔ \lnot, \vee, \wedge, \to, \leftrightarrow ¬,,,, ,包括一个一元联结词和四个二元联结词。那么使用这五个联结词,就能够表达所有命题吗? 为此,本节讨论其他联结词联结词的完备性理论


4. 其他联结词

4.1 所有一元和二元运算符

对于一元运算符,它只作用于一个命题变元,该命题变元只有 T , F T, F T,F 两个值,则可能的运算结果就只有四种:

P P P f 1 f_1 f1 f 2 f_2 f2 f 3 f_3 f3 f 4 f_4 f4
00011
10101

因此,一元运算符最多只能定义四种,即 f 1 P ⇔ F f_1P \Leftrightarrow F f1PF f 2 P ⇔ P f_2P\Leftrightarrow P f2PP f 3 P ⇔ ¬ P f_3P \Leftrightarrow \lnot P f3P¬P f 4 P ⇔ T f_4P \Leftrightarrow T f4PT 。所以,无需定义新的联结词。

对于二元运算符,它作用于两个命题变元,一个命题变元只有 T , F T, F T,F 两个值,则可能的运算结果就只有 2 2 2 = 16 2^{2^2} = 16 222=16 种:

P P PQ f 1 f_1 f1 f 2 f_2 f2 f 3 f_3 f3 f 4 f_4 f4 f 5 f_5 f5 f 6 f_6 f6 f 7 f_7 f7 f 8 f_8 f8 f 9 f_9 f9 f 10 f_{10} f10 f 11 f_{11} f11 f 12 f_{12} f12 f 13 f_{13} f13 f 14 f_{14} f14 f 15 f_{15} f15 f 16 f_{16} f16
000000000011111111
010000111100001111
100011001100110011
110101010101010101

因此,二元运算符最多只能定义十六种,其中十一种无需定义新的联结词(可以定义,比如与或与或非等):

  • P f 1 Q ⇔ F Pf_1Q \Leftrightarrow F Pf1QF P f 2 Q ⇔ P ∧ Q Pf_2Q \Leftrightarrow P\wedge Q Pf2QPQ P f 4 Q ⇔ P Pf_4Q \Leftrightarrow P Pf4QP P f 6 Q ⇔ Q Pf_6Q \Leftrightarrow Q Pf6QQ
  • P f 8 Q ⇔ P ∨ Q Pf_8Q \Leftrightarrow P \vee Q Pf8QPQ P f 10 Q ⇔ P ↔ Q Pf_{10}Q \Leftrightarrow P \leftrightarrow Q Pf10QPQ P f 11 Q ⇔ ¬ Q Pf_{11}Q \Leftrightarrow \lnot Q Pf11Q¬Q P f 12 Q ⇔ Q → P Pf_{12}Q \Leftrightarrow Q \to P Pf12QQP
  • P f 13 Q ⇔ ¬ P Pf_{13}Q \Leftrightarrow \lnot P Pf13Q¬P P f 14 Q ⇔ P → Q Pf_{14}Q \Leftrightarrow P\to Q Pf14QPQ P f 16 Q ⇔ T Pf_{16}Q \Leftrightarrow T Pf16QT

其余五个运算可以定义新的联结词:

  • f 3 , f 5 f_3, f_5 f3,f5 定义为条件否定 negation of conditional ↛ \nrightarrow P f 3 Q ⇔ P ↛ Q ⇔ ¬ ( P → Q ) P f 5 Q ⇔ Q ↛ P ⇔ ¬ ( Q → P ) Pf_3Q \Leftrightarrow P \nrightarrow Q \Leftrightarrow \neg (P \to Q)\quad Pf_5Q \Leftrightarrow Q \nrightarrow P \Leftrightarrow \neg (Q \to P) Pf3QPQ¬(PQ)Pf5QQP¬(QP)
  • f 7 f_7 f7 定义为异或/不可兼或 exclusive-Or, XOR ⊕ \oplus
    P f 7 Q ⇔ P ⊕ Q ⇔ ¬ ( P ↔ Q ) ⇔ ( P ∧ ¬ Q ) ∨ ( ¬ P ∧ Q ) Pf_7Q \Leftrightarrow P\oplus Q \Leftrightarrow \lnot (P \leftrightarrow Q) \Leftrightarrow (P \land \lnot Q) \lor (\lnot P\land Q) Pf7QPQ¬(PQ)(P¬Q)(¬PQ)
  • f 9 f_9 f9 定义为或非 NOR ↓ \downarrow
    P f 9 Q ⇔ P ↓ Q ⇔ ¬ ( P ∨ Q ) Pf_9Q \Leftrightarrow P \downarrow Q \Leftrightarrow \lnot (P \lor Q) Pf9QPQ¬(PQ)
  • f 15 f_{15} f15 定义为与非 NAND ↑ \uparrow
    P f 9 Q ⇔ P ↑ Q ⇔ ¬ ( P ∧ Q ) Pf_9Q \Leftrightarrow P \uparrow Q \Leftrightarrow \lnot (P \land Q) Pf9QPQ¬(PQ)

4.2 异或、与非、或非的一些性质

这些新的联结词,有以下性质(逻辑等价式)。证明这些性质,相当于要证明逻辑等价关系(回想一下之前总结的证明方法):

  • P ⊕ Q ⇔ Q ⊕ P P \oplus Q \Leftrightarrow Q\oplus P PQQP 交换律
  • ( P ⊕ Q ) ⊕ R ⇔ P ⊕ ( Q ⊕ R ) (P\oplus Q) \oplus R \Leftrightarrow P \oplus (Q \oplus R) (PQ)RP(QR) 结合律
  • P ∧ ( Q ⊕ R ) ⇔ ( P ∧ Q ) ⊕ ( P ∧ R ) P \land (Q \oplus R) \Leftrightarrow (P \land Q) \oplus (P\land R) P(QR)(PQ)(PR) 分配律
  • P ⊕ P ⇔ F P \oplus P \Leftrightarrow F PPF F ⊕ P ⇔ P F\oplus P \Leftrightarrow P FPP T ⊕ P ⇔ ¬ P T\oplus P \Leftrightarrow \lnot P TP¬P
  • P ↓ P ⇔ ¬ ( P ∨ P ) ⇔ ¬ P P \downarrow P \Leftrightarrow \lnot (P \lor P) \Leftrightarrow \lnot P PP¬(PP)¬P
  • ( P ↓ P ) ↓ ( Q ↓ Q ) ⇔ ¬ P ↓ ¬ Q ⇔ P ∧ Q (P \downarrow P) \downarrow (Q \downarrow Q) \Leftrightarrow \lnot P \downarrow \lnot Q \Leftrightarrow P \land Q (PP)(QQ)¬P¬QPQ
  • ( P ↓ Q ) ↓ ( P ↓ Q ) ⇔ ¬ ( P ↓ Q ) ⇔ P ∨ Q (P \downarrow Q) \downarrow (P \downarrow Q) \Leftrightarrow \lnot (P \downarrow Q) \Leftrightarrow P \lor Q (PQ)(PQ)¬(PQ)PQ
  • P ↑ P ⇔ ¬ ( P ∧ P ) ⇔ ¬ P P \uparrow P \Leftrightarrow \lnot (P \land P) \Leftrightarrow \lnot P PP¬(PP)¬P ,用与非门 NAND 表示非门 NOT ,在数字逻辑以及From Nand To Tetris中会用到
  • ( P ↑ P ) ↑ ( Q ↑ Q ) ⇔ ¬ P ↑ ¬ Q ⇔ P ∨ Q (P \uparrow P) \uparrow (Q \uparrow Q) \Leftrightarrow \lnot P \uparrow \lnot Q \Leftrightarrow P \lor Q (PP)(QQ)¬P¬QPQ
  • ( P ↑ Q ) ↑ ( P ↑ Q ) ⇔ ¬ ( P ↑ Q ) ⇔ P ∧ Q (P \uparrow Q) \uparrow (P \uparrow Q) \Leftrightarrow \lnot (P \uparrow Q)\Leftrightarrow P \land Q (PQ)(PQ)¬(PQ)PQ ,用与非门 NAND 表示与门 AND ,在数字逻辑以及From Nand To Tetris中会用到

4.3 全功能联结词集合及其证明方法

现在一共定义了九个命题联结词,但是这些联结词并非是独立的,比如 ↛ , ⊕ , ↓ , ↑ \nrightarrow, \oplus, \downarrow, \uparrow ,,, ——含有这些联结词的命题公式,可以用含有另外一些联结词的命题公式等价表示。

又由双条件律 E 15 :   P ↔ Q ⇔ ( P → Q ) ∧ ( Q → P ) E_{15}:\ P\leftrightarrow Q\Leftrightarrow (P \to Q) \land (Q \to P) E15: PQ(PQ)(QP) 知, ↔ \leftrightarrow 可由 → , ∧ \to, \land , 表示;由蕴含律 E 14 :   P → Q ⇔ ¬ P ∨ Q E_{14}:\ P \to Q \Leftrightarrow \lnot P\lor Q E14: PQ¬PQ 知, → \to 可由 ¬ , ∨ \lnot, \lor ¬, 表示。于是所有命题公式都可用 ¬ , ∧ , ∨ \lnot, \land, \lor ¬,, 表示。

更进一步,由德摩根定律知, ∨ , ∧ \lor, \land , 可以互相表示。所以任意命题公式都可由仅含有 { ¬ , ∨ } \{\lnot, \lor\} {¬,} { ¬ , ∧ } \{\lnot, \land\} {¬,} 的命题公式来等价表示

定义4.1 给定一个联结词集合,如果所有命题公式都能用其中的联结词等价表示出来,则称该联结词集合为全功能联结词集合,或称该联结词集合为功能完备的 functionally complete

例如, { ¬ , ∨ , ∧ } \{\lnot, \lor, \land\} {¬,,} { ¬ , ∨ } \{\lnot, \lor\} {¬,} { ¬ , ∧ } \{\lnot, \land\} {¬,} 都是全功能联结词集合,还有 { ¬ , → } \{\lnot, \to\} {¬,} { ↑ } \{\uparrow\} {} { ↓ } \{\downarrow\} {} 也是。

定义4.2 一个联结词集合是全功能的,并且去掉其中任意一个联结词后均不是全功能的,则称其为极小全功能联结词集合

证明方法:如果要证明联结词集合 A A A 是全功能的,可选择一个已知的全功能联结词集合 B B B ,比如 { ¬ , ∧ } \{\lnot, \land\} {¬,} { ¬ , ∨ } \{\lnot, \lor\} {¬,} ,若 B B B 中每个联结词都能用 A A A 中的联结词等价表示,则 A A A 也是全功能的,否则 A A A 不是全功能的。若要进一步证明 A A A 是极小全功能联结词集合,则需再证明, A A A 中去掉任何一个联结词后均不是全功能的。

例1:证明 { ↛ , ¬ } \{ \nrightarrow, \lnot \} {,¬} 是全功能联结词集合。
解答:由于 { ∧ , ¬ } \{ \land, \lnot\} {,¬} 是全功能联结词集合,要证明 { ↛ , ¬ } \{ \nrightarrow, \lnot \} {,¬} 也是全功能联结词集合,即要证明 { ∧ , ¬ } \{ \land, \lnot\} {,¬} 中的联结词 ∧ \land 能用 { ↛ , ¬ } \{ \nrightarrow, \lnot \} {,¬} 中的联结词等价表示

因为 P ∧ Q ⇔ ¬ ( ¬ P ∨ ¬ Q ) ⇔ ¬ ( P → ¬ Q ) ⇔ P ↛ ¬ Q P \land Q \Leftrightarrow \lnot (\lnot P \lor \lnot Q) \Leftrightarrow \lnot (P \to \lnot Q) \Leftrightarrow P \nrightarrow \lnot Q PQ¬(¬P¬Q)¬(P¬Q)P¬Q ,所以凡是能够用 { ∧ , ¬ } \{ \land, \lnot \} {,¬} 表示的命题公式都能够用 { ↛ , ¬ } \{ \nrightarrow, \lnot\} {,¬} 表示,则 { ↛ , ¬ } \{ \nrightarrow, \lnot \} {,¬} 也是全功能联结词集合。

例2:证明 { ↑ } \{ \uparrow \} {} 是极小全功能联结词集合。
解答:由于 { ∧ , ¬ } \{ \land, \lnot\} {,¬} 是全功能联结词集合,又由 ¬ P ⇔ P ↑ P \lnot P \Leftrightarrow P \uparrow P ¬PPP P ∧ Q ⇔ ( P ↑ Q ) ↑ ( P ↑ Q ) P \land Q \Leftrightarrow (P \uparrow Q) \uparrow (P \uparrow Q) PQ(PQ)(PQ) ,得 { ↑ } \{ \uparrow \} {} 是全功能联结词集合。显然,由于 { ↑ } \{ \uparrow \} {} 中只有一个联结词,故其是极小全功能联结词集合。

例3:证明 { ⊕ , ¬ } \{ \oplus, \lnot \} {,¬} 不是全功能联结词集合。

例4:已知 { ↔ , ¬ } \{ \leftrightarrow, \lnot \} {,¬} 不是全功能联结词集合,证明 { ⊕ , ¬ } \{ \oplus , \lnot\} {,¬} 也不是全功能联结词集合。

  • 7
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
离散数学中的数理逻辑是一种用于研究命题、推理和证明的数学分支,它主要关注命题的真值和命题之间的逻辑关系。以下是一些可能的创新方向: 1. 引入模糊逻辑:传统的数理逻辑只能处理精确的命题和逻辑关系,而现实中往往存在不确定性和模糊性。引入模糊逻辑,可以更好地处理这些模糊的命题和逻辑关系,如模糊命题的真值和模糊逻辑关系的推理。 2. 结合机器学习方法:机器学习方法在自然语言处理、图像识别等领域已经取得了很好的效果。将机器学习方法与数理逻辑结合,可以更好地处理复杂的逻辑问题,如逻辑规则的学习和自动证明等。 3. 引入非经典逻辑:传统的数理逻辑主要是基于古典逻辑的,而非经典逻辑可以更好地处理一些非传统的逻辑问题,如模态逻辑、时序逻辑、多值逻辑等。 4. 考虑上下文信息:命题的真值往往受到上下文信息的影响。因此,考虑上下文信息的数理逻辑可以更好地处理这些复杂的逻辑问题。 5. 引入多元逻辑:传统的数理逻辑主要是二元的,即只考虑两个命题之间的逻辑关系。而引入多元逻辑,可以更好地处理多个命题之间的逻辑关系,如三元逻辑、四元逻辑等。 举个例子,假设我们要判断一篇文章是否为“假新闻”。传统的数理逻辑可以通过对文章的各个命题进行分析和推理,来判断文章是否存在逻辑矛盾或不符合事实的情况。但是现实中的“假新闻”往往存在模糊性和复杂性,传统的数理逻辑很难处理这些情况。因此,我们可以引入模糊逻辑,通过对文章的各个命题的模糊度进行量化和分析,来判断文章是否为“假新闻”。同时,我们还可以结合机器学习方法,通过对大量“假新闻”和“真新闻”的数据进行学习和训练,来自动判断一篇文章是否为“假新闻”。这种创新的数理逻辑方法可以更好地处理现实中的复杂逻辑问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值