本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。
为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。
由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。
给你一个 n x n
的二进制矩阵 grid
中,返回矩阵中最短 畅通路径 的长度。如果不存在这样的路径,返回 -1
。
二进制矩阵中的 畅通路径 是一条从 左上角 单元格(即,(0, 0)
)到 右下角 单元格(即,(n - 1, n - 1)
)的路径,该路径同时满足下述要求:
- 路径途经的所有单元格的值都是
0
。 - 路径中所有相邻的单元格应当在 8 个方向之一 上连通(即,相邻两单元之间彼此不同且共享一条边或者一个角)。
畅通路径的长度 是该路径途经的单元格总数。
示例 1:
输入:grid = [[0,1],[1,0]]
输出:2
示例 2:
输入:grid = [[0,0,0],[1,1,0],[1,1,0]]
输出:4
示例 3:
输入:grid = [[1,0,0],[1,1,0],[1,1,0]]
输出:-1
提示:
n == grid.length
n == grid[i].length
1 <= n <= 100
grid[i][j]
为0
或1
解法1 BFS
使用宽度优先算法,对八个方向一层层的搜索,从出发点开始,第一次遍历到终点时经过的那条路径就是最短的路径。因为这条路径没有多绕一个不相关节点,所以它是最短的,也符合题目最短畅通路径。
要注意的是,出发点和目的地都可能是 1 1 1 ,这时直接返回 − 1 -1 −1 表示不可通过即可。
class Solution {
public int shortestPathBinaryMatrix(int[][] grid) {
int n = grid.length;
if (grid[0][0] == 1 || grid[n - 1][n - 1] == 1) return -1; // 不可能出发或到达
if (n <= 2) return n; // 1x1 2x2
var q = new ArrayDeque<Integer>();
int[][] d = {
{
0, 1}, {
0, -1}, {
1, 0}, {
-1, 0}, {
-1, -1}, {
-1, 1}, {
1, -1}, {
1, 1}};
q.offer(0);
grid[0][0] = 1;
int step = 1;
while (!q.isEmpty()) {
int size = q.size();
for (int i = 0; i < size; ++i) {
int u = q.poll();
int x = u / n, y = u % n;
if (x == n - 1 && y == n - 1) return step;
for (int j = 0; j < 8; ++j) {
int tx = x + d[j][0], ty = y + d[j][1];
if (tx >= 0 && tx < n && ty >= 0 && ty < n && grid[tx][ty] == 0) {
q.offer(tx * n + ty);
grid[tx][ty] = 1;
}
}
}
++step;
}
return -1;
}
}
复杂度分析:
- 时间复杂度: O ( n 2 ) O(n^2) O(n2) ,为二进制矩阵的大小。
- 空间复杂度: O ( n 2 ) O(n^2) O(n2)
解法2 A* Search启发式搜索
在说明 A*
算法前,先将上述代码改造成「可以延伸出 A*
算法」的形式:
class Solution {
static class Node {
public int x, y;
public int step;
public Node(int start, int end, int step) {
this.x = start;
this.y = end;
this.step = step;
}
};
private int[][] d = {
{
0, 1}, {
0, -1}, {
1,