- 博客(158)
- 收藏
- 关注
原创 GPU共享技术深度剖析与总结
GPU共享技术是指在同一张GPU卡上同时运行多个任务。这种技术的核心优势在于提高资源利用率、减少任务排队时间、增强公平性,并降低总任务结束时间。GPU共享的实现涉及多个层面,包括GPU架构、CUDA编程、内存管理、机器学习框架、集群调度、通信协议等。技术名称MPSMIGAntMan概述多进程服务,允许多个CPU进程共享同一GPU context多实例GPU技术,允许将单个物理GPU划分为多个独立的GPU实例框架层GPU共享方案,针对特定场景设计特点上下文共享,性能提升,配置灵活。
2024-09-24 10:27:55 1009 19
原创 AI与艺术的碰撞:当机器开始创作,创造力何在?
AI与艺术创作之间存在着密切的关系和相互影响。AI的出现为艺术创作提供了新的工具和手段,推动了艺术领域的创新和发展。同时,艺术创作也为AI提供了丰富的应用场景和数据资源,促进了AI技术的不断进步和完善。
2024-09-13 21:28:44 1577 26
原创 从零到一:构建你的第一个AI项目(实战教程)
恭喜你!你已经成功构建并运行了你的第一个AI项目。虽然这只是一个入门级的例子,但它为你打开了通往更复杂、更有趣的AI项目的大门。接下来,你可以尝试调整模型结构、使用不同的数据集、或者探索更先进的深度学习技术。同学们请记住,实践是学习AI的最佳途径,不断尝试和探索将帮助你在这条路上走得更远。
2024-09-13 19:59:39 622
原创 OpenAI O1:人工智能推理能力的新里程碑
例如,在国际数学奥林匹克的选拔考试(AIME)中,O1模型的正确率达到了74%至93%,远超GPT-4o模型的12%。首先,O1模型的使用价格非常昂贵,尤其是O1-preview版,其输入和输出token的价格分别是GPT-4o的3倍和4倍。此外,在某些情况下,O1模型的推理速度较慢,需要更长的时间来回答问题。例如,在国际数学奥林匹克的选拔考试(AIME)中,O1模型的正确率远高于之前的GPT模型。例如,在金融领域,O1模型可以帮助分析师处理复杂的财务数据,提供精准的预测和分析结果。
2024-09-13 19:54:49 1991 19
原创 Git常用指令大全详解
本文详细总结了Git的常用指令,涵盖了基础配置、仓库操作、文件操作、分支操作、远程仓库操作、标签操作以及其他高级操作。希望这些内容能够帮助大家更好地掌握Git,提高开发效率。当然,Git的功能远不止于此,还有更多的高级特性和命令等待大家去探索和学习。
2024-09-12 21:36:26 665
原创 如何将Git本地代码推送到Gitee云端仓库
通过以上步骤,你应该已经成功地将你的Git本地代码推送到Gitee云端仓库。Gitee作为一个国内优秀的代码托管平台,为开发者提供了稳定、快速的代码托管服务。
2024-09-12 21:27:17 1475 5
原创 bash: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.32‘ not found (required by /libcontroller.so
需要安装 :这些错误信息表明你的系统中缺少特定版本的 GNU C 库(glibc),即GLIBC_2.32和GLIBC_2.34。这些库版本是运行某些动态链接库(如等)所必需的。
2024-09-11 22:19:49 1185
原创 一文读懂在线学习凸优化技术
在线学习是一种从数据中持续学习的模式,与批量学习(Batch Learning)相对。在在线学习中,数据通常以序列的形式到达,模型需要实时更新以应对新数据。这种学习模式特别适合处理实时数据流或动态环境中的数据。在线学习凸优化技术作为机器学习领域的一项重要工具,不仅具有坚实的理论基础,还在多个实际应用领域展现出强大的潜力。通过理解其核心原理和应用场景,我们可以更好地利用这一技术解决实际问题,推动科技进步和社会发展。希望本文能为读者提供一个全面而深入的视角,帮助大家更好地掌握在线学习凸优化技术。
2024-09-11 22:05:47 780
原创 LSTM处理时序数据:深入解析与实战
LSTM,全称为Long Short-Term Memory,是一种特殊的RNN结构,旨在解决传统RNN在处理长序列时容易出现的梯度消失或爆炸问题。LSTM通过引入“门”机制和细胞状态,使得网络能够更好地保留长期记忆。
2024-09-10 20:08:27 1181 2
原创 CNN是怎么处理时序数据并得到预测结果
虽然CNN最初是为处理图像数据而设计的,但通过一些创新性的方法,如数据转换和模型架构的调整,它也能有效地处理时序数据并得到准确的预测结果。在实际应用中,我们还需要根据具体问题的特点,选择合适的模型参数和训练策略,以达到最佳的预测效果。希望这篇文章能帮助你更好地理解CNN在处理时序数据中的应用。
2024-09-10 19:56:36 1305 4
原创 CCF推荐C类会议和期刊总结:(计算机体系结构/并行与分布计算/存储系统领域)
中国计算机学会(CCF)在计算机体系结构、并行与分布计算、存储系统领域推荐了一系列C类会议和期刊。此汇总涵盖了各期刊和会议的全称、出版社、dblp文献网址及研究领域,为学者和研究人员提供了重要的学术交流资源。列表包括《ACM Journal on Emerging Technologies in Computing Systems》、《Concurrency and Computation: Practice and Experience》等期刊,以及ISPA、CCGRID等会议。
2024-09-09 14:56:08 1344
原创 CCF推荐B类会议和期刊总结:(计算机体系结构/并行与分布计算/存储系统领域)
中国计算机学会(CCF)定期发布国际学术会议和期刊目录,为科研人员提供参考。本文总结了计算机体系结构、并行与分布计算、存储系统领域的CCF推荐B类会议和期刊,包括会议和期刊的全称、出版社、dblp文献网址及领域分类。会议涵盖了SoCC、SPAA、PODC等26项重要国际会议,期刊则包括TAAS、TODAES、TECS等9种权威期刊,为相关领域的研究者提供了宝贵的资源。
2024-09-09 10:44:57 1586 13
原创 CCF推荐A类会议和期刊总结:计算机体系结构/并行与分布计算/存储系统领域
在中国计算机学会(CCF)发布的2022年版推荐国际学术会议和期刊目录中,计算机体系结构、并行与分布计算、存储系统领域有多项重要的A类会议和期刊。本文将对这些A类资源进行全面总结,列出它们的全称、出版社、dblp文献网址以及所属的领域。目录CCF推荐A类会议和期刊总结:计算机体系结构/并行与分布计算/存储系统领域A类期刊A类会议。
2024-09-09 10:36:15 1336
原创 CCF推荐C类会议和期刊总结:(计算机网络领域)
在计算机网络领域,中国计算机学会(CCF)推荐的C类会议和期刊为研究者提供了广泛的学术交流平台。以下是对所有C类会议和期刊的总结,包括全称、出版社、dblp文献网址以及所属领域。目录CCF推荐C类会议和期刊总结(计算机网络领域)C类期刊2. CC3. TNSM5. JNCA6. MONET8. PPNA9. WCMC11. IOTC类会议1. ANCS2. APNOMS3. FORTE4. LCN6. ICC7. ICCCN8. MASS9. P2P10. IPCCC11. WoWMoM12. ISCC。
2024-09-08 09:46:28 2455 20
原创 CCF推荐B类会议和期刊总结:(计算机网络领域)
在计算机网络领域,中国计算机学会(CCF)推荐的B类会议和期刊代表了该领域的较高水平。以下是对所有B类会议和期刊的总结,包括全称、出版社、dblp文献网址以及所属领域。目录CCF推荐B类会议和期刊总结(计算机网络领域)B类期刊B类会议。
2024-09-08 09:33:44 1671 2
原创 CCF推荐A类会议和期刊总结(计算机网络领域)- 2022
在中国计算机学会(CCF)的推荐体系中,A类会议和期刊代表着计算机网络领域的顶尖水平。这些会议和期刊不仅汇集了全球顶尖的研究成果,还引领着该领域的前沿发展。以下是根据《中国计算机学会推荐国际学术会议和期刊目录-2022》整理的计算机网络领域的所有A类会议和期刊的详细信息。以上是根据《中国计算机学会推荐国际学术会议和期刊目录-2022》整理的计算机网络领域的所有A类会议和期刊的详细信息。这些会议和期刊不仅是学术界公认的顶尖平台,也是推动计算机网络技术发展的重要力量。
2024-09-07 23:54:24 522
原创 黑神话悟空背后的技术揭秘与代码探秘
黑神话:悟空》在技术层面的突破,不仅展现了国产游戏的巨大潜力,更为整个游戏行业树立了新的标杆。通过高精度动作捕捉、全景光线追踪、DLSS 3.5、AI算法等先进技术的融合应用,游戏为玩家带来了前所未有的沉浸式体验。未来,随着技术的不断进步,我们有理由相信国产游戏将创造更多奇迹。希望这篇博客能够帮助您了解《黑神话:悟空》背后的技术奥秘。
2024-09-07 16:13:52 530
原创 Transformer实战:从零开始构建一个简单的Transformer模型
Transformer模型主要由编码器(Encoder)和解码器(Decoder)两部分组成,每个部分都包含多个相同的层。编码器负责处理输入序列,生成中间表示;解码器则根据编码器的输出生成目标序列。Transformer模型的核心是自注意力机制,它允许模型在处理序列中的每个元素时,能够考虑到序列中的所有其他元素。# 创建位置编码表# 将位置编码与输入嵌入相加assert (# 分割成多个头# 缩放点积注意力return out。
2024-09-06 09:00:00 889 4
原创 构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
接下来,我们定义一个简单的卷积神经网络。该网络包含三个卷积层,两个池化层,以及两个全连接层。self.fc1 = nn.Linear(64 * 8 * 8, 64) # 考虑到池化层后的尺寸return x。
2024-09-06 08:30:00 1454
原创 CUDA统一内存:简化GPU编程的内存管理
统一内存是CUDA中一种内存管理机制,它允许开发者在单个内存地址空间中分配内存,这块内存可以被CPU和GPU共同访问。这意味着开发者不再需要显式地在CPU和GPU之间复制数据,系统会根据需要自动将数据在CPU和GPU之间迁移。CUDA统一内存为开发者提供了一种更加简洁、高效的内存管理方式。通过统一内存,开发者可以更加专注于算法的实现和性能优化,而无需过多地关注数据的传输和管理。然而,在使用统一内存时,也需要注意其潜在的性能开销和内存限制。通过合理地使用统一内存,你可以显著提升CUDA应用程序的易用性和性能。
2024-09-05 19:41:03 589
原创 一文讲懂扩散模型
扩散模型作为一种新兴的生成模型,通过模拟数据的扩散和去噪过程来生成新的样本。其基本原理简单明了但背后蕴含着丰富的数学原理和优化技巧。随着研究的不断深入和应用场景的不断拓展,扩散模型有望在更多领域发挥重要作用并推动相关技术的发展进步。
2024-09-05 19:35:47 1022
原创 红外小目标检测:基于深度学习
红外小目标检测技术作为现代军事、安防、交通和工业等领域的重要工具,其发展不仅依赖于技术的不断进步,还需要结合实际应用场景的需求进行不断优化和创新。未来,随着深度学习、多传感器融合等技术的深入应用,红外小目标检测技术将迎来更加广阔的发展前景。
2024-09-05 19:28:50 2065
原创 使用Python读取Excel数据
本文介绍了如何使用pandas库来读取Excel文件中的数据,并提供了一个完整的代码案例。通过pandas,你可以方便地读取、查看和操作Excel数据,为后续的数据分析和处理打下基础。如果你经常需要处理Excel文件,pandas绝对是一个强大且易用的工具。希望这篇文章对你有所帮助!如果你有任何问题或需要进一步的帮助,请随时留言。
2024-09-04 17:17:46 747 1
原创 CNN的魅力:探索卷积神经网络的无限可能
在这个数据驱动的时代,人工智能正以前所未有的速度改变着我们的生活。而在人工智能的众多分支中,卷积神经网络(Convolutional Neural Networks, CNN)无疑是最耀眼的一颗明星。从图像识别到自然语言处理,从医疗诊断到自动驾驶,CNN以其独特的结构和强大的学习能力,展现出了无与伦比的魅力。今天,就让我们一起走进CNN的世界,探索它的无限可能。
2024-09-04 09:43:54 1397
原创 一文讲懂大模型调优技术
大模型调优是一项复杂而富有挑战性的工作。本文全面解析了大模型调优的关键技术,包括数据预处理与增强、模型架构调整、超参数优化、正则化与泛化能力提升以及分布式训练与并行优化等方面。希望这些技术能够帮助开发者更加高效地利用和优化大模型,推动人工智能技术的进一步发展。
2024-09-04 09:27:54 1380 14
原创 一文读懂GPU通信互联技术:GPUDirect、NVLink与RDMA
GPUDirect是NVIDIA开发的一项技术,旨在实现GPU与其他设备(如网络接口卡NIC和存储设备)之间的直接通信和数据传输,而无需CPU的参与。传统上,数据在GPU和另一个设备之间传输时,必须通过CPU,这导致潜在的性能瓶颈和延迟增加。GPUDirect技术则通过绕过CPU,直接访问和传输数据,显著提高系统性能。NVLink是NVIDIA开发的一种高速、高带宽的互连技术,用于连接多个GPU之间或GPU与其他设备(如CPU、内存等)之间的通信。
2024-08-13 14:37:36 1366
原创 群智能算法:【WOA】鲸鱼优化算法详细解读
在当今的优化问题中,随着问题复杂性的增加,传统的优化方法往往难以找到全局最优解。近年来,基于自然界动物行为的优化算法越来越受到研究者的关注。鲸鱼优化算法(Whale Optimization Algorithm, WOA)便是其中一种新兴的群体智能优化算法,它模拟了鲸鱼群体的捕食行为,具有较强的全局搜索能力和较快的收敛速度。本文将详细解读鲸鱼优化算法的原理、步骤,并通过Python代码展示其实现过程。
2024-08-01 16:45:58 681 1
原创 群智能算法:灰狼优化算法(GWO)的详细解读
灰狼隶属于群居生活的犬科动物,处于食物链的顶层,它们具有非常严格的社会等级结构。注意:在实际应用中,可能需要根据具体问题调整算法的参数,如狼群数量、迭代次数、搜索空间的边界等。此外,对于更复杂的问题,还需要引入其他优化策略来提高算法的性能。:第三等级的狼,服从于Alpha和Beta,并支配其他低等级的狼。:狼群中的头狼,主要负责决策,如捕食、栖息和作息时间等。:第四等级的狼,需要服从其他所有高等级的狼。在算法中,它们代表其余的候选解。灰狼优化算法通过模拟这种社会等级和狩猎行为,在解空间中搜索最优解。
2024-08-01 16:14:20 945
原创 群智能算法:(JS)深入解读人工水母算法:原理、实现与应用
人工水母算法作为一种新兴的启发式优化算法,通过模拟自然界中水母的行为模式,为解决复杂优化问题提供了一种新的思路。人工水母算法是一种基于种群的优化算法,它通过模拟水母在海洋中的搜索和捕食行为来寻找问题的最优解。算法中的每个“水母”代表搜索空间中的一个可能解,通过模拟水母的游动和捕食行为,不断更新解的位置,从而逼近最优解。在实际应用中,更新水母位置的策略会更加复杂,可能包括模拟水母的收缩-扩张运动、跟随行为、避免碰撞等机制。:根据水母的当前位置和适应度值,以及预设的搜索策略,更新每个水母的位置和速度。
2024-08-01 15:57:01 302
原创 K8s大模型算力调度策略的深度解析
随着大数据和人工智能技术的飞速发展,Kubernetes(简称K8s)作为容器编排的领军者,在支撑大规模模型训练和推理方面扮演着越来越重要的角色。在大模型算力的调度过程中,如何高效、合理地分配和管理资源成为了一个亟待解决的问题。本文将深入探讨K8s在大模型算力调度中的策略与实践。
2024-07-30 17:26:34 1573 33
原创 异构算力的调度策略解析与实现
异构算力调度是一种针对多类型计算资源的调度策略,通过合理分配任务到不同类型的处理器上,以优化计算性能、资源利用率和功耗。在传统的计算环境中,CPU是主要的处理单元,但随着图形处理、深度学习等领域的快速发展,GPU、FPGA等专用处理器逐渐崭露头角,形成了异构计算环境。
2024-07-30 17:20:02 821
原创 深度学习训练基于Pod和RDMA
RDMA技术提供了一种跨过CPU、操作系统和TCP/IP协议栈,直接访问远端内存到本地内存的方式。它具有低延迟和低CPU使用率的优点。RDMA技术主要有三种实现方式:InfiniBand、iWARP和RoCE。其中,RoCE因其综合性能较好、兼容性较优、价格普惠而受到广泛认可。
2024-06-25 10:01:47 1786 39
原创 Pod之间的通信详解
在Kubernetes集群中,Pod之间的通信是非常核心的功能。Pod是Kubernetes中的最小部署单元,它们之间经常需要进行通信以完成各种任务。本文将深入探讨Pod之间的通信方式,并通过示例代码来进一步解释。在Kubernetes集群中,Pod间通信的实现原理主要依赖于集群的网络架构和配置。
2024-06-08 14:35:49 1642 8
原创 基于Kubernetes和DeepSpeed进行分布式训练的实战教程
基于k8s、DeepSpeed在两台Node节点GPU服务器上进行分布式训练的实战教程
2024-06-07 09:43:02 1828 47
原创 Grafana详解
Grafana是一款开源的数据可视化工具,主要用于大规模指标数据的可视化展现。下面将详细介绍Grafana的特点、功能以及基本使用方法。
2024-05-28 23:00:22 1045 7
原创 OpenStack与Kubernetes:云计算平台的两大巨头及其差异
OpenStack是一个用于构建和管理云计算平台的开源软件。它提供了一套丰富的组件,包括计算服务Nova、网络服务Neutron和块存储服务Cinder等,使得用户可以灵活地构建自己的云计算环境。OpenStack的灵活性、多租户支持以及强大的安全性,使其成为构建私有云、公有云和混合云的理想选择。
2024-05-28 15:29:09 1849 2
原创 Kubernetes中的节点选择方法
在Kubernetes集群中,节点选择是一个重要的环节,它决定了Pod将被调度到哪个节点上运行。Kubernetes提供了多种节点选择的方法,以满足不同的部署需求和资源优化。本文将介绍Kubernetes中的几种节点选择方法,并附带相关代码示例。通过合理的节点选择策略,可以提高集群的资源利用率和应用的性能。是一种简单的节点选择方法,它允许你直接将Pod调度到指定的节点上。在这个示例中,Pod将被调度到具有指定标签的节点上,且该标签的值在指定的范围内。在这个示例中,Pod将被调度到具有指定标签的节点上。
2024-05-27 18:17:04 379 2
原创 深入理解Kubernetes的调度核心思想
在Kubernetes集群中,调度器是一个核心组件,它负责将Pod(Kubernetes中的最小部署单元)分配到合适的节点上运行。Kubernetes的调度器是其核心组件之一,它通过智能的调度策略确保Pod能够被高效地分配到最合适的节点上运行。Kubernetes调度器是一个独立的控制平面组件,它监视新创建的Pod,这些Pod尚未被分配到节点上,或者Pod当前运行的节点不再满足其要求。同时,还会考虑Pod的亲和性、节点的污点设置等因素,从而过滤出符合Pod运行条件的节点候选集。
2024-05-27 17:56:40 786
原创 深入解析kube-scheduler的算法自定义插件
一个详细解释,展示如何编写和使用 kube-scheduler 的算法自定义插件。创建插件文件:首先,创建一个插件文件,例如。导入必要的包:在插件文件中,导入所需的包,包括 Kubernetes 的调度框架和其它相关的依赖。import ("context"定义插件结构体:定义一个实现接口的结构体,并为其添加必要的字段。// 添加所需的字段和配置实现插件方法:在插件结构体中,实现接口的方法,包括Name()Filter()PreScore()Score()和Permit()
2024-05-24 22:27:05 1113 8
原创 Kubernetes的灵魂核心:kube-scheduler
在Kubernetes集群中,kube-scheduler是一个至关重要的组件,它负责将Pod(Kubernetes中的最小部署单元)调度到合适的节点上运行。例如,如果Pod需要2GB的内存,而某个节点只剩下1GB,那么这个节点就会被过滤掉。:在通过预选的节点中,kube-scheduler会进行优选(Priorities)过程,根据一定的算法为每个节点打分,选择得分最高的节点作为Pod的最终运行节点。kube-scheduler的作用是根据一定的调度策略和算法,为待调度的Pod寻找一个最合适的节点运行。
2024-05-24 10:49:42 766 3
Mysql数据库实战教程&案例&相关项目
2024-05-01
python通信-学生课程实验心得&案例&相关项目
2024-05-01
python+烟花代码+自定义烟花+动态放烟花
2024-05-01
100套精品求职word简历-适合大学生工作人员,自定义修改
2024-04-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人