LLM
文章平均质量分 96
异构算力老群群
博士在读: 山东大学 (985),
本硕: (双一流)(211)高校,
多年企业级系统开发经验,
研究方向:k8s(main) 安全 异构算力,软件工程,网络安全,物联网,优化算法,区块链;
️获得研究生国家奖学金,第一作者发表中科院SCI一区Top多篇,EI国际会议多篇,总计影响因子80+,单篇影响因子10.6,谷歌学术index引用180+;
欢迎交流科研心得,
I believe 数字未来,数字共享
展开
-
CUDA:王者之巅——探究CUDA为何能成为并行计算的佼佼者
CUDA(Compute Unified Device Architecture)是NVIDIA公司为其GPU(图形处理器)设计的一种并行计算平台和编程模型。诞生背景GPU的并行处理能力:GPU原本主要用于图形处理,但其内部的大规模并行结构使得它非常适合进行密集型计算工作负载。计算需求的增长:随着科学技术的发展,尤其是在科学计算、大数据处理、机器学习和深度学习等领域,对计算能力的需求不断增长。编程接口的需求:为了充分利用GPU的强大计算能力,需要一种易于编程和优化的接口,CUDA应运而生。原创 2024-05-21 20:12:30 · 1616 阅读 · 34 评论 -
大语言模型参数真的必须要万亿以上吗?
大语言模型(LLMs)是深度学习中用于处理自然语言任务的一类模型,它们通过大量的参数来学习和模拟人类语言的复杂性。这些模型通常基于变换器(Transformer)架构,能够捕捉语言中的长距离依赖关系,并在多种语言任务上表现出色,如文本生成、翻译、摘要、问答等。作用文本生成:生成连贯、语法正确的文本。语言理解:理解文本的含义,包括情感分析、意图识别等。翻译:将一种语言的文本翻译成另一种语言。问答系统:回答有关文本内容的问题。摘要生成:生成文本的简短摘要。原创 2024-05-21 19:42:53 · 1478 阅读 · 27 评论