HashMap源码分析

HashMap源码分析

HashMap的数据结构

HashMap的底层数据结构就是数组+链表+红黑树(1.8引入)
key - value
在这里插入图片描述

HashMap继承体系图

在这里插入图片描述

HashMap源码分析

HashMap中的属性说明

字段名说明
DEFAULT_INITIAL_CAPACITY = 1 << 4缺省table大小,也就是默认table大小
MAXIMUM_CAPACITY = 1 << 30table 最大长度
DEFAULT_LOAD_FACTOR = 0.75f默认缺省负载因子
TREEIFY_THRESHOLD = 8树化阈值,链表的长度的树化阈值
UNTREEIFY_THRESHOLD = 6树降级成为链表的阈值,也就是树的节点少于6则降级为链表
MIN_TREEIFY_CAPACITY = 64树化的阈值,只有在整个哈希表中的所有个数超过64时,才允许树化
Node<k,v>[] table哈希表
int size当前哈希表中的元素个数
int modCount当前哈希表结构修改次数
int threshold扩容阈值,当你的哈希表中的元素超过阈值时,触发扩容
float loadFactor负载因子, threshold = capacity * loadFactor,用于计算threshold,

HashMap的构造函数

// 1 参数说明
// initialCapacity: 默认初始化大小
// loadFactor: 负载因子
public HashMap(int initialCapacity, float loadFactor) {
        // 判断入参是否合法等
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        // 根据入参到的初始化大小找到最近一个比他的二次方数,因为table的大小永远是二的次方数
        this.threshold = tableSizeFor(initialCapacity);
    }

// 2
 public HashMap(int initialCapacity) {
     this(initialCapacity, DEFAULT_LOAD_FACTOR);
 }

// 3
public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

// 4
 public HashMap(Map<? extends K, ? extends V> m) {
     this.loadFactor = DEFAULT_LOAD_FACTOR;
     putMapEntries(m, false);
 }

// 作用:返回一个大于等于cap的数字,并且这个数字一定是2的次方数
// 算法:比如cap = 10
// n = cap - 1 = 9
// ob1001 | ob0100 = ob1101    (n |= n >>> 1)
// ob1101 | ob0011 = ob1111    (n |= n >>> 2)
// ob1111 | ob0000 = ob1111    (n |= n >>> 4)
// ... 他这个算法的作用就是让这个数的二进制最高为1的后面都变成1
// 所以n + 1就变成了 2的次方数,返回
static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

注意:调用HashMap的构造函数并不会创建哈希表

HashMap的 put方法

在这里插入图片描述

public V put(K key, V value) {
		// hash(key): 
		// 作用: 使用了扰动算法 让key的hash值的高16为也参与了路由运算
      return putVal(hash(key), key, value, false, true);
}

// hash算法,这里使用了扰动算法,为了让key的高16位也参与hash
 static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }


    /**
     * Implements Map.put and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
	 
	 onlyIfAbsent:如果为true, 说明当前哈希表中已有该key,只需要替换即可
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
		// tab: 引用当前hashMap 的散列表
		// p: 表示当前散列表的元素
		// n:表示散列表数组的长度
		// i: 表示路由寻址 结果
        Node<K,V>[] tab; Node<K,V> p; int n, i;
		
		// 延迟初始化逻辑,只有第一次调用putVal时会初始化hashMap对象中的最耗费内存的散列表
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
			
		// 	(n - 1) & hash: 路由寻址算法
		// 找到当前元素需要插入数组的下标,判断找到的桶位有没有数据
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
			
		// 	找到的桶位有数据,又可能是链表,也有可能已经成为树了
        else {
		
			// e: 不为null的话,找到一个与当前要插入的key-value一致的key的元素,也就是去哈希表中找一个元素的key与当前要插入的元素的key一致的数据,赋值给node
			// k: 表示临时的一个key
            Node<K,V> e; K k;
			
			// 判断桶位中的该元素是不是与当前要插入的元素的key完全一致,用于后续判断是否需要替换操作
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
				
			// 判断当前散列表的元素是否树型结构	
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            
			// 当前散列表是链表结构,并且链表的头元素与当前要插入的key不一致
			else {
			
                for (int binCount = 0; ; ++binCount) {
				
					// 将p的下一个元素赋值给e,并且判断是不是null
					// 条件成立的话,说明迭代到最后一个元素了,也没有找到一个与你要插入的key一致的node
                    if ((e = p.next) == null) {
						
						// p的下一个节点为null,则将当前要插入的数据放到p的后面
                        p.next = newNode(hash, key, value, null);
						
						// 判断当前链表的长度,是否达到了树化的标准
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
							
							//树化操作
                            treeifyBin(tab, hash);
                        break;
                    }
					
					// 判断当前e这个元素是否与当前要插入的元素的key一致
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
			
			// e != null, 说明 在当前哈希表中找到了一个当前要插入的元素的key一致的元素,需要进行替换
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
		
		// modCount: 表示散列表结构被修改的次数,替换Node元素的value不计数
        ++modCount;
		
		// size:当前散列表的数量,如果自增后的值大于扩容的阈值,则进行扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

说明:其实HashMap是使用了用空间换时间的做法,让HashMap的效率更高

  1. threshold: 扩容阈值 = table数组的长度 * 负载因子(0.75)
  2. size: 等于哈希表中元素的总数量
  3. MIN_TREEIFY_CAPACITY = 64,代表了只有table数组的长度达到64才能发生树化,

HashMap的resize方法

  /**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
	 
	 扩容方法
     */
    final Node<K,V>[] resize() {
		// oldTab: 引用扩容前的哈希表
        Node<K,V>[] oldTab = table;
		
		// oldCap:表示扩容之前table数组的长度
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
		
		// oldThr: 表示扩容之前的扩容阈值,触发本次扩容的阈值
        int oldThr = threshold;
		
		// newCap: 扩容之后table数组的大小
		// newThr: 扩容之后,下次再次触发扩容的条件
        int newCap, newThr = 0;
		
		// 判断hashMap散列表已经初始化过了,是一场正常的扩容
        if (oldCap > 0) {
		
			// 判断如果扩容之前table数组的大小已经达到 最大阈值后,则不扩容,且扩容条件为 int 最大值
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
			
			// oldCap 左移一位实现数值翻倍,并且赋值给newCap, newCap 小于数组最大值限制 且 扩容之前的table数组的大小 >= 16
			// 这种情况下, 则下次扩容的阈值 等于 当前阈值翻倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
		
		// oldCap == 0,说明hashMap中的散列表是null
		// 1. 是通过new HashMap(initCap, loadFactor);
		// 2. new HashMap(initCap);
		// 3. new HashMap(map); 并且这个map是有数据的
		// 以上三种情况才会出现oldCap == 0,但是 oldThr > 0
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
			
		// oldCap == 0,
		// new HashMap()
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY; // 16
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); // 12
        }
		
		// newThr为0时,通过newCap 和localFactor计算出一个newThr的值
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
		
		// 创建一个更大的一个数组
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
		
		// 说明,本次HashMap扩容之前,table不为null
        if (oldTab != null) {
		
			// 遍历旧table
            for (int j = 0; j < oldCap; ++j) {
				// 当前node节点
                Node<K,V> e; 
				
				// 将当前桶位的数据赋值给e,并判断当前桶位是否有数据
                if ((e = oldTab[j]) != null) {
				
					// 将旧table中的当前桶位设为null,方便jvm回收内存
                    oldTab[j] = null;
					
					//  第一种情况:当前桶位只有一个元素,从未发生过碰撞,这种情况,直接计算出当前元素应该存放在 新数组中的位置
					// 然后放进去就可以了
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
						
					// 第二种情况: 当前节点已经树化	
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
						
					// 第三种情况: 当前节点为链表	
                    else { // preserve order
						
						// 低位链表: 存放在扩容之后的数组的下标位置,与当前数组的下标位置一致
                        Node<K,V> loHead = null, loTail = null;
						// 高位链表:存放在扩容之后的数组的下标位置为 当前数组下标位置 + 扩容之前的数组长度
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
							
							// 将链表中的每一个元素遍历判断应该放在低位链表中还是高位链表中
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
						
						// 将拆分后的链表赋值给新链表
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

HashMap的get 方法

 public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
	
		// tab: 引用当前hashMap的散列表
		// first: 桶位中的头元素
		// e: 临时node元素
		// n: table数组长度
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
		
		// 判断当前table不为空并且赋值给tab引用
		// 并且将tab的长度复制或给临时变量n
		// (first = tab[(n - 1) & hash]): 计算出该hash在tab中的下标,并将该下标的元素赋值给first
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
			
			// 第一种情况: 定位出来桶中一个元素就是当前要查询出的元素key一致
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
				
			// 说明: 第一个元素不是我们要查找的元素,并且first的下一个元素不为null	
            if ((e = first.next) != null) {
				
				// 第二种情况:当前桶位是 红黑树
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
					
				// 第三种情况:当前桶位是链表	
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

HashMap的remove方法

 public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }


    /**
     * Implements Map.remove and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to match if matchValue, else ignored
     * @param matchValue if true only remove if value is equal
     * @param movable if false do not move other nodes while removing
     * @return the node, or null if none
	 
	 参数说明:
	 hash:需删除元素的hash值
	 key: 需删除元素的key值
	 value:需删除元素的value值,
	 matchValue:true: 则必须hashMap中元素的key和value与入参的key,value都相同才能删除, false:不需要匹配value值
     */
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
							   
		// tab: 引用当前hashMap中的散列表
		// p: 当前node元素
		// n: 表示当前散列表数组的长度
		// index: 表示寻址结果
        Node<K,V>[] tab; Node<K,V> p; int n, index;
		
		// 判断条件,并赋值
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
			// 说明路由的桶位是由数据的,需要进行下一步匹配操作,并且删除
			
			// node: 表示查找到的结果
			// e: 当前node的下一个元素
            Node<K,V> node = null, e; K k; V v;
			
			// 第一种情况: 当前桶位中的元素就是要删除的元素,则将当前元素赋值给结果node
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
				
			// 	当前桶位的下一个不为null
            else if ((e = p.next) != null) {
			
				// 第二种情况:判断当前桶位是否是红黑树
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
					
				// 第三种情况:链表的情况	
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
			
			// 判断是否找到了要删除的元素
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
								 
				// 第一种情况:要删除的数据时一个红黑树上的节点				 
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
					
				// 	第二种情况:要删除的元素就是桶位元素,则将该元素的下一个元素放入到桶位中
                else if (node == p)
                    tab[index] = node.next;
				
				// 第三种情况: 要删除的数据是链表数据,将当前元素p的下一个元素 设置成 要删除元素的 下一个元素
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

红黑树下一个文章写

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值