题意:给你一个有向图,问在保证这个图无重边,无自环,且不是强连通图的情况下,最多可以添加多少条有向边
思路:分析可知,最终得到的图分为A,B两个部分,两部分各自为完全图,A中每个点都向B中每个点引一条有向边,B中每个点必定不存在通往A的有向边。这样可推得整个图的总边数为a*(a-1)+b*(b-1)+ab,需要添加的边数是a*(a-1)+b*(b-1)+ab-m。而a+b=n,化简得a*(a-1)+b*(b-1)+ab=n*n-n-a*b。ab=a*(n-a)=b*(n-b),若要让a*b尽量小,根据函数曲线,要求a和b尽量远离n/2。令b尽量小,则需要找到原图中入度为0或出度为0的强连通分量中点数最少的一个作为B部分,其余的作为A部分。
#include<iostream>
#include<stack>
#include<vector>
#include<cstring>
#include<string>
using namespace std;
const long long maxn=100001;
const long long INF=0x3f3f3f3f;
vector <long long> v[maxn];
stack <long long> s;
long long n,m,t,T,ans,sum,minn,visit,numa,numb;
long long dfn[maxn],low[maxn],belong[maxn],stack[maxn],x[maxn],y[maxn],number[maxn],inn[maxn],outt[maxn];
bool instack[maxn];
void tarjan(long long x)
{
long long y,k,temp;
visit++;
dfn[x]=low[x]=visit;
instack[x]=true;
s.push(x);
for(int i=0;i<v[x].size();i++)
{
y=v[x][i];
if(!dfn[y])
{
tarjan(y);
if(low[y]<low[x])
low[x]=low[y];
}
else if(instack[y] && dfn[y]<low[x])
low[x]=dfn[y];
}
// cout<<"x="<<x<<" dfn[x]="<<dfn[x]<<" low[x]="<<low[x]<<endl;
if(dfn[x]==low[x])
{
temp=0;
if(!s.empty())
{
sum++;
while(!s.empty())
{
temp++;
k=s.top();
instack[k]=false;
belong[k]=sum;
s.pop();
if(k==x) break;
}
number[sum]=temp;
// cout<<"number["<<sum<<"]="<<temp<<endl;
}
}
}
void solve()
{
while(!s.empty())
s.pop();
visit=sum=0;
minn=INF;
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(inn,0,sizeof(inn));
memset(outt,0,sizeof(outt));
memset(belong,0,sizeof(belong));
memset(instack,0,sizeof(instack));
for(int i=1;i<=n;i++)
if(!dfn[i])
tarjan(i);
for(int i=1;i<=m;i++)
{
if(belong[x[i]]==belong[y[i]]) continue;
outt[belong[x[i]]]++;
inn[belong[y[i]]]++;
}
for(int i=1;i<=sum;i++)
if(inn[i]==0 || outt[i]==0)
if(number[i]<minn)
minn=number[i];
}
int main()
{
cin>>T;
t=0;
while(T--)
{
cin>>n>>m;
for(int i=1;i<=n;i++)
v[i].clear();
for(int i=1;i<=m;i++)
{
cin>>x[i]>>y[i];
v[x[i]].push_back(y[i]);
}
solve();
if(sum==1)
cout<<"Case "<<++t<<": "<<-1<<endl;
else
{
numa=n-minn;
numb=minn;
ans=numa*(numa-1)+numb*(numb-1)+numa*numb-m;
cout<<"Case "<<++t<<": "<<ans<<endl;
// cout<<"min="<<minn<<endl<<"ans="<<ans<<endl;
}
}
return 0;
}