1. 前言
很多时候,收到一个AI功能需求,想要写技术方案的时候,领导或者管理者都想知道针对这个需求,市面上的最优水平是什么?我们如何进行收集这样的信息呢?
文章目录
- 1. 前言
- 2. 竞品分析
- 3. 如何找开源技术
- 3.1. Hugging Face
- 3.2. 百度Paddle模型库
- 3.3. Modelscope模型库
- 3.4. Paperwithcode模型排行网址
- 3.5. Github
- 3.6. Google
- 3.7. 论文期刊
- 1. **`Conference on Neural Information Processing Systems (NeurIPS)`**
- 2. **International Conference on Machine Learning (ICML)**
- 3. **Association for the Advancement of Artificial Intelligence (AAAI)**
- 4. **International Joint Conference on Artificial Intelligence (IJCAI)**
- 5. **`Conference on Computer Vision and Pattern Recognition (CVPR)`**
- 6. **Conference on Empirical Methods in Natural Language Processing (EMNLP)**
- 7. **International Conference on Learning Representations (ICLR)**
- 最后
2. 竞品分析
2.1. 竞品公司
参考文章:
新质力·新智造 |“2024福布斯中国人工智能科技企业评选”结果正式发布
竞品分析的公司有
- 国际层面
- 微软
- 谷歌
- OpenAI
- 特斯拉
- 国内层面
- 百度智能云
- 华为云
- 阿里云
- 腾讯云智能
- 科大讯飞
我们的竞品分析主要关注国内的公司。
有些小功能,不一定是这些巨头公司做得好,也要从手机APP或者微信小程序上面看看别人的表现:
- 中国移动云盘APP
- 天翼云盘
- 联通云盘
2.2. 竞品的产品形式
需要确定竞品的产品形式:
- 小程序
- 网页功能
- 平台功能
- API接口
- APP软件
2.3. 百度AI产品
可以在百度AI产品大全里面搜索相对应的AI功能,然后收集信息
2.4. 华为云产品
可以在华为云产品里面搜索相对应的AI功能,然后收集信息
2.5. 阿里AI产品
可以在阿里AI产品里面搜索相对应的AI功能,然后收集信息。
2.6. 腾讯云智能的产品
可以在腾讯云智能的人工智能产品这里搜索相对应的AI功能,然后收集信息
2.7. 科大讯飞的产品
科大讯飞的产品,可以进行搜索相对应竞品功能
3. 如何找开源技术
我们可以通过一些平台和网站,和顶级论文期刊去查找最新和开源的技术
查找开源技术的平台或者网址:
- Huggingface
- 百度Paddle
- 阿里modelscope
- Paperwithcode
- Github
3.1. Hugging Face
Hugging Face 的网站提供了以下几个主要功能和服务:
- Models: 提供了大量的预训练模型,用户可以直接下载并在自己的项目中使用这些模型。
- Datasets: 收集了许多常用的数据集,这些数据集对于训练和测试机器学习模型至关重要。
- Courses: 提供了免费的 NLP 课程,帮助开发者和研究人员更好地理解和使用 NLP 技术。
- Documentation: 提供详细的文档和支持材料,帮助用户理解和使用 Hugging Face 的工具和技术。
- Community: Hugging Face 还是一个社区中心,研究人员和开发者可以在这里协作分享模型、数据集和应用程序。
Huggingface会公布很多优秀的开源模型
3.2. 百度Paddle模型库
3.3. Modelscope模型库
3.4. Paperwithcode模型排行网址
Paperwithcode会将多种AI任务进行性能排行Browse State-of-the-Art
但是注意,这个排名不是硬性要求,有些机构是不会上传它们的模型进行排名的。总结来说,这个排名有可能不一定全,但是显示出来的排名一定是可靠的
下面是图像风格排名展示图
3.5. Github
直接在Github上面搜索相关任务的关键词,查找相关开源仓库,需要关注开源仓库的维护、star数量、更新时间等,太久远的仓库直接不考虑。
3.6. Google
参考文章: 如何像专家一样高效使用 Google 搜索
谷歌搜索是一个非常棒的工具,我们主要使用一些关键词搜索相关的内容,包括开源论文、开源仓库、预训练模型等等
1. 通过任务关键词搜索
"image aesthetic assessment"
。例如我想搜索图像美学评估的信息,就使用双引号""
,可以进行精准匹配
"image aesthetic assessment" and 2023
。也可以增加年份,查找一些比较新的结果。
"image aesthetic assessment" and "CVPR2023"
。也可以增加期刊名字和年份,查找一些针对某个期刊的论文结果
size:https://github.com/ image aesthetics quality assessment
。也可以加上某些期刊网站
、或者GitHub网址
进行搜索
2. 统计整理GitHub仓库
通过3.6.1的搜索,可以收集到很多GitHub的开源仓库,统计这些GitHub开源仓库的star数量、维护时间、维护机构
,通过star数量、维护时间、维护机构进行第一轮的过滤筛选,筛选出前三的开源仓库。
3.7. 论文期刊
我们也可以从一些顶级期刊网址上搜索相关论文,来了解这个AI功能需求的最新进展。
下面罗列了一些顶级人工智能的期刊:
1. Conference on Neural Information Processing Systems (NeurIPS)
- 含义:神经信息处理系统大会。
- 关注领域:主要关注神经网络及其在信号处理、机器学习、认知科学等多个领域的应用。它涵盖了从理论研究到实际应用的广泛主题。
2. International Conference on Machine Learning (ICML)
- 含义:国际机器学习会议。
- 关注领域:专注于机器学习的所有方面,包括算法开发、理论框架、实际应用案例等。
3. Association for the Advancement of Artificial Intelligence (AAAI)
- 含义:人工智能促进协会。
- 关注领域:这个组织不仅举办年度会议,还致力于推动人工智能领域的研究和发展。会议涉及广泛的人工智能主题,包括但不限于机器学习、自然语言处理、规划、感知等。
4. International Joint Conference on Artificial Intelligence (IJCAI)
- 含义:国际人工智能联合会议。
- 关注领域:这是一个人工智能领域的综合会议,讨论各种与AI相关的技术和应用,包括但不限于搜索技术、知识表示、自动推理等。
5. Conference on Computer Vision and Pattern Recognition (CVPR)
- 含义:计算机视觉与模式识别会议。
- 关注领域:专注于计算机视觉和模式识别的研究成果,如图像处理、视频分析、人脸识别等。
6. Conference on Empirical Methods in Natural Language Processing (EMNLP)
- 含义:基于经验方法的自然语言处理会议。
- 关注领域:侧重于使用数据驱动的方法来解决自然语言处理中的问题,如文本分类、情感分析、机器翻译等。
7. International Conference on Learning Representations (ICLR)
- 含义:国际学习表征会议。
- 关注领域:关注深度学习和表示学习的研究进展,探索如何更有效地表示和处理数据以支持机器学习任务。
NeurIPS和CVPR几乎就是家喻户晓的了。可以从这些网址搜索最新论文,了解最新状态
最后
通过这一轮信息的浏览和阅读,相信自己对整体的信息有个大致认知了。然后后续自己对这些信息的过滤筛选,就可以形成一份比较系统、权威、完整的技术调研初稿了。基本上到了这一步就知道这个AI功能目前的市面水平如何了,也就是可以回答以下问题:
- 市面上这个技术水平如何?
- 市面上这个技术的开源水平如何?
- 如果要进行技术落地,大致难度如何?需要多少人力或者物力?时间是多少?
看到这里恭喜你,你开始步入算法技术规划的天堂!