手把手教你确定AI功能的最优实现技术方案

在这里插入图片描述

1. 前言

很多时候,收到一个AI功能需求,想要写技术方案的时候,领导或者管理者都想知道针对这个需求,市面上的最优水平是什么?我们如何进行收集这样的信息呢?

2. 竞品分析

2.1. 竞品公司

参考文章:
新质力·新智造 |“2024福布斯中国人工智能科技企业评选”结果正式发布

竞品分析的公司有

  • 国际层面
    • 微软
    • 谷歌
    • OpenAI
    • FaceBook
    • 特斯拉
  • 国内层面
    • 百度智能云
    • 华为云
    • 阿里云
    • 腾讯云智能
    • 科大讯飞

我们的竞品分析主要关注国内的公司。
有些小功能,不一定是这些巨头公司做得好,也要从手机APP或者微信小程序上面看看别人的表现:

  • 中国移动云盘APP
  • 天翼云盘
  • 联通云盘

2.2. 竞品的产品形式

需要确定竞品的产品形式:

  • 小程序
  • 网页功能
  • 平台功能
  • API接口
  • APP软件

2.3. 百度AI产品

可以在百度AI产品大全里面搜索相对应的AI功能,然后收集信息

在这里插入图片描述

2.4. 华为云产品

可以在华为云产品里面搜索相对应的AI功能,然后收集信息

在这里插入图片描述

2.5. 阿里AI产品

可以在阿里AI产品里面搜索相对应的AI功能,然后收集信息。

在这里插入图片描述

2.6. 腾讯云智能的产品

可以在腾讯云智能的人工智能产品这里搜索相对应的AI功能,然后收集信息

在这里插入图片描述

2.7. 科大讯飞的产品

科大讯飞的产品,可以进行搜索相对应竞品功能

在这里插入图片描述

3. 如何找开源技术

我们可以通过一些平台和网站,和顶级论文期刊去查找最新和开源的技术

查找开源技术的平台或者网址:

  • Huggingface
  • 百度Paddle
  • 阿里modelscope
  • Paperwithcode
  • Github
  • Google

3.1. Hugging Face

Hugging Face 的网站提供了以下几个主要功能和服务:

  • Models: 提供了大量的预训练模型,用户可以直接下载并在自己的项目中使用这些模型。
  • Datasets: 收集了许多常用的数据集,这些数据集对于训练和测试机器学习模型至关重要。
  • Courses: 提供了免费的 NLP 课程,帮助开发者和研究人员更好地理解和使用 NLP 技术。
  • Documentation: 提供详细的文档和支持材料,帮助用户理解和使用 Hugging Face 的工具和技术。
  • Community: Hugging Face 还是一个社区中心,研究人员和开发者可以在这里协作分享模型、数据集和应用程序。

Huggingface会公布很多优秀的开源模型

在这里插入图片描述

3.2. 百度Paddle模型库

飞浆星河社区模型库

在这里插入图片描述

3.3. Modelscope模型库

Modelscope魔塔社区模型库

在这里插入图片描述

3.4. Paperwithcode模型排行网址

Paperwithcode会将多种AI任务进行性能排行Browse State-of-the-Art

但是注意,这个排名不是硬性要求,有些机构是不会上传它们的模型进行排名的。总结来说,这个排名有可能不一定全,但是显示出来的排名一定是可靠的

在这里插入图片描述
下面是图像风格排名展示图
在这里插入图片描述

3.5. Github

直接在Github上面搜索相关任务的关键词,查找相关开源仓库,需要关注开源仓库的维护、star数量、更新时间等,太久远的仓库直接不考虑。

在这里插入图片描述

3.6. Google

参考文章: 如何像专家一样高效使用 Google 搜索
谷歌搜索是一个非常棒的工具,我们主要使用一些关键词搜索相关的内容,包括开源论文、开源仓库、预训练模型等等

1. 通过任务关键词搜索

"image aesthetic assessment"。例如我想搜索图像美学评估的信息,就使用双引号"",可以进行精准匹配

在这里插入图片描述
"image aesthetic assessment" and 2023。也可以增加年份,查找一些比较新的结果。

在这里插入图片描述
"image aesthetic assessment" and "CVPR2023"。也可以增加期刊名字和年份,查找一些针对某个期刊的论文结果

在这里插入图片描述
size:https://github.com/ image aesthetics quality assessment。也可以加上某些期刊网站、或者GitHub网址进行搜索

在这里插入图片描述

2. 统计整理GitHub仓库

通过3.6.1的搜索,可以收集到很多GitHub的开源仓库,统计这些GitHub开源仓库的star数量、维护时间、维护机构,通过star数量、维护时间、维护机构进行第一轮的过滤筛选,筛选出前三的开源仓库。

3.7. 论文期刊

我们也可以从一些顶级期刊网址上搜索相关论文,来了解这个AI功能需求的最新进展。

下面罗列了一些顶级人工智能的期刊:

1. Conference on Neural Information Processing Systems (NeurIPS)

  • 含义:神经信息处理系统大会。
  • 关注领域:主要关注神经网络及其在信号处理、机器学习、认知科学等多个领域的应用。它涵盖了从理论研究到实际应用的广泛主题。

2. International Conference on Machine Learning (ICML)

  • 含义:国际机器学习会议。
  • 关注领域:专注于机器学习的所有方面,包括算法开发、理论框架、实际应用案例等。

3. Association for the Advancement of Artificial Intelligence (AAAI)

  • 含义:人工智能促进协会。
  • 关注领域:这个组织不仅举办年度会议,还致力于推动人工智能领域的研究和发展。会议涉及广泛的人工智能主题,包括但不限于机器学习、自然语言处理、规划、感知等。

4. International Joint Conference on Artificial Intelligence (IJCAI)

  • 含义:国际人工智能联合会议。
  • 关注领域:这是一个人工智能领域的综合会议,讨论各种与AI相关的技术和应用,包括但不限于搜索技术、知识表示、自动推理等。

5. Conference on Computer Vision and Pattern Recognition (CVPR)

  • 含义:计算机视觉与模式识别会议。
  • 关注领域:专注于计算机视觉和模式识别的研究成果,如图像处理、视频分析、人脸识别等。

6. Conference on Empirical Methods in Natural Language Processing (EMNLP)

  • 含义:基于经验方法的自然语言处理会议。
  • 关注领域:侧重于使用数据驱动的方法来解决自然语言处理中的问题,如文本分类、情感分析、机器翻译等。

7. International Conference on Learning Representations (ICLR)

  • 含义:国际学习表征会议。
  • 关注领域:关注深度学习和表示学习的研究进展,探索如何更有效地表示和处理数据以支持机器学习任务。

NeurIPS和CVPR几乎就是家喻户晓的了。可以从这些网址搜索最新论文,了解最新状态

最后

通过这一轮信息的浏览和阅读,相信自己对整体的信息有个大致认知了。然后后续自己对这些信息的过滤筛选,就可以形成一份比较系统、权威、完整的技术调研初稿了。基本上到了这一步就知道这个AI功能目前的市面水平如何了,也就是可以回答以下问题:

  • 市面上这个技术水平如何?
  • 市面上这个技术的开源水平如何?
  • 如果要进行技术落地,大致难度如何?需要多少人力或者物力?时间是多少?

看到这里恭喜你,你开始步入算法技术规划的天堂!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值