深度学习之alexNet算法参数量

AlexNet由输入层、5个卷积层和3个全连接层组成,参数量主要集中在全连接层。卷积层包括96个11x11、256个5x5、384个3x3、384个3x3和256个3x3卷积核,全连接层包含4096个节点的两层及1000-way softmax层。总计约6000万参数,全连接层占90%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                          AlexNet中的参数数量

         AlexNet的网络结构图:
AlextNet
总的来说,AlexNet由输入层,5个卷积层,3个全连接层组成(其中最后一个全连接层也是softmax输出层)。图中详细标出了输入大小以及各层的结构参数。特别需要注意的是:网络是分布在2个GPU上的,部分层只跟同一个GPU中的上一层连接(看起来,stackoverflow那个帖子中题主没有考虑这个问题)。

接下来梳理一下各层的参数情况:

  • 输入层:图片大小:宽高通道(RGB)依次为W * H * C = 224 x 224 x 3, 即150528像素。
  • 第1个隐层, 卷积层,使用96个11 x 11 x 3的卷积核,如图所示节点数量为:55(W) x 55(H) x 48(C) x 2 = 290400(注:这个地方的节点数与论文中提到的要高,有点奇怪。因为这层跟其他层计算方法一样,其他层的节点数跟论文中完全一致)。根据卷积层的参数 = 卷积核大小 x 卷积核的数量
    + 偏置数量(即卷积的核数量)
    ,本层参数数量为:
    (11 * 11 * 3 * 96) + 96 = 34848, 注:参数分为2部分 ww 和 bb ࿰
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值