AlexNet中的参数数量
AlexNet的网络结构图:
总的来说,AlexNet由输入层,5个卷积层,3个全连接层组成(其中最后一个全连接层也是softmax输出层)。图中详细标出了输入大小以及各层的结构参数。特别需要注意的是:网络是分布在2个GPU上的,部分层只跟同一个GPU中的上一层连接(看起来,stackoverflow那个帖子中题主没有考虑这个问题)。
接下来梳理一下各层的参数情况:
- 输入层:图片大小:宽高通道(RGB)依次为W * H * C = 224 x 224 x 3, 即150528像素。
- 第1个隐层, 卷积层,使用96个11 x 11 x 3的卷积核,如图所示节点数量为:55(W) x 55(H) x 48(C) x 2 = 290400(注:这个地方的节点数与论文中提到的要高,有点奇怪。因为这层跟其他层计算方法一样,其他层的节点数跟论文中完全一致)。根据卷积层的参数 = 卷积核大小 x 卷积核的数量
+ 偏置数量(即卷积的核数量),本层参数数量为:
(11 * 11 * 3 * 96) + 96 = 34848, 注:参数分为2部分 ww 和 bb