算是一个自己的知识盲点,记录一下
题目描述
黄金分割数 0.61803…0.61803… 是个无理数,这个常数十分重要,在许多工程问题中会出现。有时需要把这个数字求得很精确。
对于某些精密工程,常数的精度很重要。也许你听说过哈勃太空望远镜,它首次升空后就发现了一处人工加工错误,对那样一个庞然大物,其实只是镜面加工时有比头发丝还细许多倍的一处错误而已,却使它成了“近视眼”!!
言归正传,我们如何求得黄金分割数的尽可能精确的值呢?有许多方法。
比较简单的一种是用连分数:
1
黄金数 = ---------------------
1
1 + -----------------
1
1 + -------------
1
1 + ---------
1 + ...
这个连分数计算的“层数”越多,它的值越接近黄金分割数。
请你利用这一特性,求出黄金分割数的足够精确值,要求四舍五入到小数点后 100100 位。
小数点后3位的值为:0.6180.618;
小数点后4位的值为:0.61800.6180;
小数点后5位的值为:0.618030.61803;
小数点后7位的值为:0.61803400.6180340。 (注意尾部的 00,不能忽略)
你的任务是:写出精确到小数点后 100100 位精度的黄金分割值。
思路
做的题目比较少,这还是第一次碰到控制小数点以后有效位的题目,结果一下手忙脚乱了,最后找到了一种合适的方法
decimal
以下介绍关于decimal的常规用法
设定有效数字
#需要导入这个库
from decimal import*
#设置精度
getcontext().prec=6
a=Decimal(1)/Decimal(7)
print(a)
print(type(a))
结果为
题解代码
from decimal import *
getcontext().prec=101
a=1
for i in range(3000):
a=Decimal(1/(1+a))
print(round(a,100))
编码不易,点个赞支持一下吧~~~