典型的深度搜索问题
题目描述
作物杂交是作物栽培中重要的一步。已知有 N 种作物 (编号 1 至 N ),第 i 种作物从播种到成熟的时间为 Ti。作物之间两两可以进行杂交,杂交时间取两种中时间较长的一方。如作物 A 种植时间为 5 天,作物 B 种植时间为 7 天,则 AB 杂交花费的时间为 7 天。作物杂交会产生固定的作物,新产生的作物仍然属于 NN 种作物中的一种。
初始时,拥有其中 M 种作物的种子 (数量无限,可以支持多次杂交)。同时可以进行多个杂交过程。求问对于给定的目标种子,最少需要多少天能够得到。
如存在 4 种作物 ABCD,各自的成熟时间为 5 天、7 天、3 天、8 天。初始拥有 AB 两种作物的种子,目标种子为 D,已知杂交情况为 A × B → C,A × C → D。则最短的杂交过程为:
第 1 天到第 7 天 (作物 B 的时间),A × B → C。
第 8 天到第 12 天 (作物 A 的时间),A × C → D。
花费 12 天得到作物 D 的种子。
输入描述
输入的第 1 行包含 4 个整数 N, M, K, T,N 表示作物种类总数 (编号 1 至 N),M 表示初始拥有的作物种子类型数量,K 表示可以杂交的方案数,T 表示目标种子的编号。
第 2 行包含 N 个整数,其中第 i 个整数表示第i 种作物的种植时间(1≤Ti ≤100)。
第 3 行包含 M 个整数,分别表示已拥有的种子类型(1≤Kj ≤M),两两不同。
第 4 至 K + 3 行,每行包含 3 个整数 A, B,C表示第 A 类作物和第 B 类作物杂交可以获得第 C 类作物的种子。
其中,1≤N≤2000,2≤M≤N,1≤K≤10 ,1≤T≤N, 保证目标种子一定可以通过杂交得到。
思路
根据目标种子,逆向搜索杂交等式,最后输出最大用时即可
输出描述
输出一个整数,表示得到目标种子的最短杂交时间。
输入输出样例
示例
输入
6 2 4 6
5 3 4 6 4 9
1 2
1 2 3
1 3 4
2 3 5
4 5 6
输出
16
样例说明
第 1 天至第 5 天,将编号 1 与编号 2 的作物杂交,得到编号 3 的作物种子。
第 6 天至第 10 天,将编号 1 与编号 3 的作物杂交,得到编号 4 的作物种子。
第 6 天至第 9 天,将编号 2 与编号 3 的作物杂交,得到编号 5 的作物种子。
第 11 天至第 16 天,将编号 4 与编号 5 的作物杂交,得到编号 6 的作物种子。
总共花费 16 天。
代码
import os
import sys
# 请在此输入您的代码
s1 = list(map(int, input().split()))
N = s1[0]
M = s1[1]
K = s1[2]
T = s1[3]
Days = list(map(int, input().split()))
seeds = list(map(int, input().split()))
hybrids = []
for i in range(K):
hybrids.append(list(map(int, input().split())))
times =[]
timess=0
make = []
number=0
def find(T,flag):
global hybrids, make, seeds,Days,times,timess,number
for i in range(len(hybrids)):
if hybrids[i][2] == T:
s = []
s.append(hybrids[i][0])
s.append(hybrids[i][1])
make.append(s)
print(s, timess, max(Days[hybrids[i][0] - 1], Days[hybrids[i][1] - 1]))
temp=timess
timess+=max(Days[hybrids[i][0]-1],Days[hybrids[i][1]-1])
if hybrids[i][0] in seeds and hybrids[i][1] in seeds:
times.append(timess)
if hybrids[i][1] not in seeds:
find(hybrids[i][1],0)
if flag!=1:
timess=temp
if hybrids[i][0] not in seeds:
find(hybrids[i][0],0)
if flag!=1:
timess =temp
find(T,1)
print(max(times))
编码不易,有帮助的话点个赞支持一下吧~~~