高分六号数据下载

本文介绍了如何在中国资源卫星应用中心下载高分六号的遥感数据。高分六号是一颗具备高分辨率和宽覆盖特点的低轨光学卫星,其相机配置包括2米/8米全色/多光谱相机及16米多光谱相机,拥有独特的‘红边’和紫外波段。数据下载过程包括设置参数、订购和下载,需要注意的是,如果谷歌浏览器无法加载页面,可以尝试使用搜狗等其他浏览器。数据下载后,由于文件量大,可能对电脑性能有一定要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近由于自身需求在中国资源卫星应用中心查找下载高分数据,发现可以下载高分六号数据了。以下是高分六号数据的一些介绍:

高分六号于2019年3月21日正式投入使用,它是一颗低轨光学遥感卫星,具有高分辨率宽覆盖高质量高效成像等特点,配置2米全色/8米多光谱高分辨率相机(PMS)、16米多光谱中分辨率宽幅相机(WFV),2米全色/8米多光谱相机观测幅宽90公里,16米多光谱相机观测幅宽800公里

宽幅相机(WFV)除了常见的蓝/绿/红/近红外四个波段,还增加了能够有效反映作物特有光谱特性的“红边”波段,以及一个紫外波段,一共8个波段。

下面是在中国资源卫星应用中心进行数据查找和订购的过程:

(1)设置参数,进行数据查找;
在这里插入图片描述
(2)数据查找和订购;
在这里插入图片描述
在这里插入图片描述
订购完成后只需要等待审核完成就可以下载啦!!!
在这里插入图片描述
(3)数据下载;
在这里插入图片描述
订购完成就可以下载了,因为数据量较大,后期处理对电脑性能带来了一定的考验~

请注意!!! 如果谷歌等浏览器加载不出数据查询的界面,可以换成搜狗等其它浏览器试试~

以上就是GF-6下载的介绍了,希望可以帮助到你!

<think>好的,用户想了解如何制作高分六号卫星的数据集的处理方法及工具。首先,我需要整理已有的信息,特别是引用中的相关内容。 根据引用[4],高分六号GF-6 WFV数据在水平方向分成了三段,处理时需要拼接,并且需要注意投影转换的问题,避免使用UTM等横轴墨卡托投影,因为跨带会导致变形。推荐使用ENVI的扩展工具来处理拼接,无需手动操作。这应该是处理流程中的一个关键步骤。 另外,引用[3]提到ENVI 5.6及更高版本有去云工具,比如基于对象分类或规则分类的方法,可以用于去除云层。所以在预处理步骤中,去云是必要的,尤其是在制作数据集时,干净的数据很重要。 引用[2]提到高分一号和二号的数据处理技术,虽然主要是关于GF-1和GF-2,但可能处理流程类似,比如正射校正和多光谱融合。不过高分六号可能有自己的传感器特性,需要注意参数设置。 接下来,我需要将这些步骤系统化。首先数据获取,用户需要从中国资源卫星应用中心下载原始数据,如引用[1]所说。然后预处理包括辐射定标、大气校正,可能用到ENVI的Radiometric Correction工具。接着是几何校正和正射校正,引用[4]提到正射校正和投影转换,可能需要DEM数据。然后去云,使用ENVI内置工具。然后是数据拼接,引用[4]的扩展工具可以自动处理分段的WFV数据,避免手动拼接的麻烦。最后是投影转换和坐标系统一,确保数据正确。 工具方面,ENVI是主要的处理软件,尤其是扩展工具。可能需要Python或GDAL进行批量处理或脚本自动化。QGIS作为辅助工具,检查数据质量。 用户可能的问题包括如何处理跨带投影变形,如何高效去云,以及自动拼接的方法。需要强调ENVI扩展工具的重要性,以及引用中的具体方法。此外,数据集的应用场景可能影响处理流程,比如农业监测可能需要不同的校正方法。 最后,生成相关问题时要围绕处理步骤、工具选择、常见问题解决和应用场景展开,确保覆盖用户可能进一步的需求。</think>### 高分六号卫星数据集处理方法及工具 #### **1. 数据获取与预处理** - **数据来源** 高分六号(GF-6)的原始数据可通过中国资源卫星应用中心下载[^1]。数据格式通常为分段的WFV(宽幅成像仪)数据,需注意其分块存储特性(水平方向分为三段)[^4]。 - **预处理步骤** - **辐射定标与大气校正**: 使用ENVI或PIE-Engine等遥感处理工具,将原始DN值转换为表观反射率或辐射亮度。例如,在ENVI中通过`Radiometric Correction`工具完成。 - **几何校正**: 利用地面控制点(GCP)或卫星自带参数进行几何精校正,消除传感器姿态和地形引起的畸变。 - **去云处理**: 采用ENVI内置的云检测工具(如基于规则的分类方法)或深度学习模型(如Mask R-CNN)识别并去除云层区域[^3]。 #### **2. 数据拼接与投影转换** - **分段数据拼接**: GF-6 WFV数据通常分为三段,需使用ENVI扩展工具(如`ENVI App Store`中的专用插件)自动拼接,避免手动操作误差。 ```python # 示例:使用GDAL库批量拼接分块数据(需配合ENVI或QGIS脚本) import gdal from gdal import Merge options = gdal.WarpOptions(format='GTiff', dstNodata=0) gdal.Warp('merged.tif', ['block1.tif', 'block2.tif', 'block3.tif'], options=options) ``` - **投影转换**: 避免使用UTM等横轴墨卡托投影(跨带导致变形),推荐转换为WGS84经纬度坐标系。在ENVI中使用`Reproject GLT`工具或`Build RPC Orthorectification`进行正射校正[^4]。 #### **3. 数据集生成** - **多光谱融合**(可选): 若需融合全色与多光谱数据,使用ENVI的`Gram-Schmidt Pan Sharpening`或`NNDiffuse Pan Sharpening`工具提升空间分辨率。 - **裁剪与标注**: 根据应用场景(如农业监测、地表覆盖分类)裁剪感兴趣区域(ROI),并利用标注工具(如LabelImg)生成标签数据。 #### **4. 常用工具推荐** | 工具名称 | 功能 | 使用场景 | |----------------|--------------------------|------------------------| | ENVI 5.6+ | 辐射校正、拼接、去云 | 全流程处理 | | GDAL/Python | 批量投影转换、脚本自动化 | 数据格式转换与拼接 | | QGIS | 可视化与坐标验证 | 辅助检查数据质量 | | PIE-Engine | 云平台在线处理 | 快速分析与共享 | #### **注意事项** - **跨带变形问题**:GF-6幅宽大,投影转换时优先选择地理坐标系(如WGS84)。 - **数据量管理**:WFV数据量较大,建议使用高性能计算节点或分块处理。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值