Deep Learning分布式训练1---Horovod with Pytorch

个人学习过程记录----------

官网链接:

Horovod with PyTorch — Horovod documentation

实验背景:

数据集的大小、模型的复杂度(存储和计算量),以及当下计算设备的硬件资源的利用,都影响着模型训练时间。同时为追求模型的最佳效果,模型复杂度也相当高。

实验目的:

利用Horovod实现Pytorch算法分布式训练。

当前分布式深度学习方式:

(1) 模型并行VS 数据并行

(2)通信机制:

网络拓扑(ParameterServer 和Allreduce)

通信步调(同步更新和异步更新)

实验步骤:

step1: 下载源代码,可运行示例

​git clone ​​​​​​https://github.com/horovod/horovod.git

进入/examples/pytorch,打开pytorch_mnist.py

运行命令:

horovodrun -np 2 python pytorch_mnist.py

查看机器用卡情况:

nvidia-smi

发现当前程序使用了两张卡在运行。

更多horovodrun运行命令解释:

(1) 单机多卡实现分布式训练,可

horovodrun -np 2 -H localhost:2 python pytorch_mnist.py

若是单机,-H localhost:2也可以不写

(2)多机多卡,  运行在4台机器的4个GPUs上

horovodrun -np 16 -H server1:4,server2:4,server3:4,server4:4 python pytorch_mnist.py

参数解释:

-np                       GPU总数
-H localhost         本地服务器使用的GPU数
-H server_n:N      N表示server_n使用的GPU数量

利用Horovod with PyTorch训练自己的脚本 步骤

(同时也是pytorch_mnist.py中的示例的实现步骤)

Install:

To run on CPU:

pip install horovod

Run on GPUs with NCCL:

HOROVOD_GPU_OPERATIONs=NCCL pip install horovod

step1: Initialize Horovod:

import horovod.torch as hvd
hvd.init()

step2: Pin each GPU to a single process.

每个进程设置一个GPU,设为local rank, 服务器上的第一个进程会被分配到第一个GPU,第二个进程分配到第二个GPU, and so forth.

if torch.cuda.is_available():
    torch.cuda.set_device(hvd.local_rank())

step3: Scale the learning rate by the number of workers.

根据workers的数量调整学习率,同步分布式训练中batch_size根据workers数量而变化,,学习率的增加可以弥补batch size的增加。

step4: Wrap the optimizer in hvd.DistributedOptimizer.

优化器的实现通过hvd.DistributedOptimizer实现

step5: Broadcast the initial variable states from rank 0 to all other process:

初始变量从rank 0 广播到其他进程

hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)

这一步骤用来确保所有workers在以随机权值或已有的checkpoint进行训练的时候初始化是一致的。

step6: 修改你的代码以只在worker 0上保存checkpoints,而不会被其他workers影响打断。

通过命令

hvd.rank()!=0

来保护模型的checkpoint代码。

至此,简单的Horovod with Pytorch就结束了,下一篇开启Horovod in Docker.

<think>好的,用户想了解分布式模型训练的方法及工具。首先,我需要整理已有的引用内容,看看有哪些相关信息可以利用。根据引用[1],分布式训练是处理大规模AI模型的关键技术,涉及基本概念、框架如TensorFlow和PyyTorch,以及性能瓶颈和解决方案。引用[2]提到模型增大导致内存和算力需求增加,单卡难以应对,需要分布式训练。引用[3]则讨论了任务划分、同步/异步策略以及挑战如数据分片和容错。引用[4]提到了PyTorch的DataParallel方法,而引用[5]介绍了在Spark上使用Deeplearning4j的案例。 接下来,我需要将这些信息组织成结构清晰的回答。用户可能关心方法分类、常用工具和优化策略。方法方面,数据并行和模型并行是基础,还有混合并行和流水线并行。工具部分,TensorFlow、PyTorchHorovodDeeplearning4j都是关键,需要简要说明每个的特点和示例代码。优化策略方面,同步/异步更新、梯度压缩、混合精度训练以及硬件协同都是重点,可以结合引用中的挑战和解决方案来阐述。 还要注意用户可能遇到的问题,比如数据分片、模型同步效率,这时候需要引用[3]提到的挑战,并给出对应的解决方法。例如,梯度压缩和混合精度训练可以提升通信效率。同时,引用[4]中的DataParallel和DistributedDataParallel的区别需要解释清楚,PyTorch的示例代码能帮助用户理解具体实现。 另外,引用[5]中的Deeplearning4j在Spark上的应用可能是一个具体的案例,可以单独作为工具的一部分,说明不同框架的应用场景。最后,生成的相关问题要覆盖用户可能进一步想了解的内容,比如优缺点比较、框架选择、性能优化和与大数据平台的结合等,这样能引导用户深入探索。</think>### 分布式模型训练方法及工具详解 #### 一、分布式训练的核心方法 1. **数据并行(Data Parallelism)** 将数据集划分为多个子集分配到不同计算节点,每个节点持有完整的模型副本,独立计算梯度后汇总更新。例如在PyTorch中可使用`DataParallel`或`DistributedDataParallel`[^4]: ```python # PyTorch DataParallel示例 model = nn.DataParallel(model, device_ids=[0, 1, 2]) ``` - 优点:实现简单,适用于模型较小、数据量大的场景 - 缺点:通信开销随节点数增加而上升 2. **模型并行(Model Parallelism)** 将大型模型按层或结构拆分到不同设备,如将Transformer的不同注意力头分配到不同GPU。适合显存需求超过单卡容量的场景[^2]。 3. **混合并行(Hybrid Parallelism)** 结合数据并行与模型并行,例如在训练千亿参数模型时,先对模型横向切分,再对数据纵向分片[^3]。 4. **流水线并行(Pipeline Parallelism)** 将模型按阶段拆分,不同设备处理不同阶段的计算,通过微批次(micro-batch)重叠通信与计算时间[^2]。 --- #### 二、常用工具框架对比 | 工具 | 特点 | 适用场景 | |---------------|----------------------------------------------------------------------|------------------------------| | TensorFlow | 内置`tf.distribute.Strategy`,支持MirroredStrategy/TPUStrategy等 | 大规模生产环境 | | PyTorch | 通过`torch.distributed`和`DistributedDataParallel`实现灵活分布式训练 | 研究场景、动态图模型 | | Horovod | 基于MPI的通信库,支持TensorFlow/PyTorch/Keras | 跨框架统一分布式方案 | | Deeplearning4j| 集成Apache Spark生态,支持YARN集群调度 | 大数据平台结合的分布式训练[^5]| --- #### 三、关键优化策略 1. **同步与异步更新** - 同步更新(如AllReduce):所有节点梯度聚合后统一更新,保证收敛稳定性 - 异步更新:节点独立更新参数,通信开销低但可能影响收敛 2. **梯度压缩与通信优化** 使用梯度量化(如FP16)、稀疏通信(Top-K梯度传输)减少带宽压力。例如PyTorch的`apex`库支持混合精度训练: ```python from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level="O2") ``` 3. **硬件协同设计** - GPU-NVLink互联:提升多卡通信速度 - 使用RDMA网络:降低跨节点通信延迟 --- #### 四、实践案例参考 1. **TensorFlow分布式训练示例** ```python strategy = tf.distribute.MirroredStrategy() with strategy.scope(): model = create_model() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy') ``` 2. **PyTorch分布式启动脚本** ```bash python -m torch.distributed.launch --nproc_per_node=4 train.py ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值