- 博客(26)
- 资源 (2)
- 收藏
- 关注
原创 NVIDIA Jetson NX 控制GPIO
目录前言运行引脚图片前言看到一些博客说需要pip安装Jetson.GPIO以及通过下面命令设置用户权限sudo groupadd -f -r gpio sudo usermod -a -G gpio your_user_name然后需要将源下载到Jetson.GPIO:sudo cp lib/python/Jetson/GPIO/99-gpio.rules /etc/udev/rules.d/为了使新规则生效,您需要通过运行以下命令重新引导或重新加载udev规则:sudo udevad
2021-12-22 10:35:35 4583 4
原创 GAN生成对抗网络
GAN生成对抗网络基本思想:GAN的思想是是一种二人零和博弈思想,有两个这样的博弈者,一个人名字是生成模型(G),另一个人名字是判别模型(D)。他们各自有各自的功能。相同点是:这两个模型都可以看成是一个黑匣子,接受输入然后有一个输出,类似一个函数,一个输入输出映射。不同点是:生成模型功能:比作是一个样本生成器,输入一个噪声/样本,然后把它包装成一个逼真的样本,也就是输出。判别模型:比作一个二分类器(如同0-1分类器),来判断输入的样本是真是假。(就是输出值大于0.5还是小于0.5);如何
2021-11-23 19:48:42 1987
原创 深度理解DETR
深度理解DETR关键点:其实这篇文章的创新点从标题(End-to-End Object Detection with Transformers)就可以看出来,主要有以下三个重点:Object detectionTransformersEnd-to-end文章所做的工作,就是将transformers运用到了object detection领域,取代了现在的模型需要手工设计的工作(例如 非极大值抑制 和 anchor generation),并且取得了不错的结果。如上图所示,文章的主要有两
2021-11-23 16:39:50 3254
原创 Swin Transformer V2
Swin Transformer V2论文链接:https://arxiv.org/pdf/2111.09833.pdf代码链接:https://github.com/microsoft/Swin-Transformer问题:作者提出了将Swin Transformer缩放到30亿个参数的技术 ,并使其能够使用高达1536×1536分辨率的图像进行训练。在很多方面达到了SOTA。目前,视觉模型尚未像NLP语言模型那样被广泛探索,部分原因是训练和应用中的以下差异:1) 视觉模型通常在规模上面临不稳
2021-11-23 16:26:06 3653
原创 pytorch查看模型参数总结
1:DNN_printer其中(3, 32, 32)是输入的大小,其他方法中的参数同理from DNN_printer import DNN_printerbatch_size = 512def train(epoch): print('\nEpoch: %d' % epoch) net.train() train_loss = 0 correct = 0 total = 0 // put the code here and you can get
2021-07-06 14:28:48 2942
原创 ETHZ数据集介绍
Ess等构建了基于双目视觉的行人数据库用于多人的行人检测与跟踪研究。该数据库采用一对车载的AVT Marlins F033C摄像头进行拍摄,分辨率为640×480,帧率13-14fps,给出标定信息和行人标注信息,深度信息采用置信度传播方法获取官网连接https://data.vision.ee.ethz.ch/cvl/aess/dataset/...
2021-06-11 16:39:54 2037 3
原创 PRW数据集
PRW(野外人员重新识别)数据集是Maretk1501数据集的扩展。 作者不仅提供边界框,所有的帧都进行了标注。 因此,人们可以评估不同人员检测器的影响。6个摄像头:5 are 1080×1920 HD and 1 is 576×720 SD训练集 5, 704 frames and 482 IDs测试集 6, 112 frames and 450 IDs这篇有转VOC的代码https://blog.csdn.net/songwsx/article/details/102536374参考链接:
2021-06-11 16:28:06 2008 1
原创 CUHK-SYSU数据集介绍
该数据集是一个大规模的人员搜索基准,包含18184张图像和8432个身份。根据图像来源,数据集可以分为两部分:街道捕捉和电影:在街拍中,图像通过手持摄像机收集,跨越数百个场景,并尝试包括视点、照明、分辨率、遮挡的变化,同时,我们选择影视剧作为另一种图像采集来源,因为它们提供了更多样化的场景和更具挑战性的视角。该数据集为人的重新识别和行人检测提供注释。每个查询人出现在至少两个图像中,并且每个图像可以包含多个查询人和多个背景人。数据被划分为训练集和测试集。训练集包含11206幅图像和5532个查询人,测试集
2021-06-11 16:12:26 5239 7
原创 CityPersons数据集介绍
CityPersons数据集是cityscape的一个子集,它只包含个人注释。有2975张图片用于培训,500张和1575张图片用于验证和测试。一幅图像中行人的平均数量为7人,提供了可视区域和全身标注。CITYPERSON数据集是CITYSCAPES数据集的子集,CITYPERSON的标注文件只标注了其中HUMAN的类别。https://github.com/CharlesShang/DetectronPYTORCH/tree/master/data/citypersons这里的代码说了标注格式等。
2021-06-11 15:29:35 10600 6
原创 Caltech Pedestrian数据集介绍
是一个用于检测行人的数据集,加州理工学院于 2009 年发布,此后经过数次修改至今。其包含约 10 小时 640 * 480 的 30Hz 视频,主要由行驶在乡村街道上的小车拍摄,视频共计约 250,000 帧,包含 350,000 个边界框和 2300 个行人的注释,其中注释包括包围盒详细的闭塞标签之间的对应关系。数据集主要包括1. 训练集+测试集:seq格式的数据;2.行人标签数据:vbb(video bounding box)格式的数据,该格式数据主要是数据集1中的行人bounding box。
2021-06-11 14:35:43 2490 5
原创 CrowdHuman数据集介绍
CrowdHuman数据集是旷世发布的用于行人检测的数据集,图片数据大多来自于google搜索。CrowdHuman 数据集数据量比较大,训练集15000张,测试集5000张,验证集4370张。训练集和验证集中共有 470K 个实例,约每张图片包含23个人,同时存在各种各样的遮挡。每个人类实例都用头部边界框、人类可见区域边界框和人体全身边界框注释。数据集可以在 http://www.crowdhuman.org/ 进行下载,其中测试数据集没有公开标注。CrowdHuman测试hbox:head b
2021-06-11 11:33:36 8517 3
原创 人脸识别loss
loss的变化Y = wx + bsoftmax loss使得该类的样本更多地落入到该类的决策边界之内。而这种方式主要考虑样本是否能正确分类,缺乏类内和类间距离的约束。Center LossCenter Loss的整体思想是希望一个batch中的每个样本的feature离feature 的中心的距离的平方和要越小越好,也就是类内距离要越小越好。作者提出,最终的损失函数包含softmax loss和center loss,用参数λ来控制二者的比重。Center Loss的出现,使得人脸识
2021-05-26 18:49:41 254
原创 深度学习归一化操作
- [ 1] 为什么要进行归一化:因为不同的参数变换范围和大小可能不一样,取值大的影响因素大取值小的影响因素小,所以需要归一化来均衡。- [2 ] 归一化的方法有哪些:1:Rescaling (min-max normalization、range scaling)将每一维特征线性映射到目标范围[a,b],即将最小值映射为a,最大值映射为b,常用目标范围为[0,1]和[−1,1],特别地,映射到[0,1]计算方式为:2:Mean normalization:将均值映射为0,同时用最大值最小
2021-05-26 10:47:42 681
原创 FairMOT多目标跟踪
讲的比较细,可以好好看一看理解与实现复现讲的比较详细复现也可以应用于摄像头实时连接特点:1、以往的模型大多是两阶段,detection一阶段,reid一阶段这篇论文是一阶段的,提出了一个更公平的策略对于检测和追踪2、Obj detection需要deep信息,如果reid之前的方法也是高纬度则不利于两个同时达到最优。低纬度学习reid有利于减少与高纬度的竞争、对小目标好、速度快3、DLA34(更好的多尺度,多层)作为backbone,更加适合于大小目标4、Anchor不适合reid,用
2021-05-17 19:35:48 627
原创 docker新安装后的众多问题
bash: pip3: command not found…python -m pip install --upgrade pip -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.combash: sudo: command not foundapt-get updateapt-get install sudo模块存在但是程序运行时却说没有export PYTHONPATH=ImportError: libGL.so
2021-05-13 20:57:13 204
原创 If you are on Ubuntu or Debian, install libgtk2.0-dev and pkg-config
ImportError: libGL.so.1: cannot open shared object file: No such file or directory这两个问题基本上都是cv2出现了问题解决方法:先按照提示安装libgtk2.0-dev and pkg-config然后RUN apt-get updateRUN apt-get install ffmpeg libsm6 libxext6 -y亲测有效,然后就可以正常运行程序了...
2021-05-11 19:11:58 1045
原创 踩坑总结:No module named torch_sparse
踩坑总结:No module named torch_sparse参考 里面的方法3,亲测有效https://blog.csdn.net/YPP0229/article/details/106328173
2021-05-11 16:24:19 738
原创 Reid 的loss
在ReID中常见的loss有Identity Loss、Verification Loss、Triplet loss1.Identity Loss.把ReID问题看做是一个图像分类问题,每一个ID都是一个类。2.verification loss可以度量两个样本之间的关系verification loss可以度量两个样本之间的关系3. Triplet lossRe-ID模型训练过程可视为一个检索排序问题。如图所示, 其基本思想是,通过预定义的边缘(margin),正对之间的距离应该小于负对样本之
2021-05-08 19:56:02 713
原创 Linux如何修改pip安装包位置
linux如何修改pip安装包位置参考以下两篇有用https://blog.csdn.net/sinat_33384251/article/details/95491131https://blog.csdn.net/mecong/article/details/90453111
2021-05-07 11:40:31 3942
原创 UBUNTU输入法安装后乱码
解决方案终端输入cd ~/.configrm -rf SogouPY* sogou*然后杀掉输入法进程 即输入killall fcitx亲测有效!!!如下图所述:
2020-01-14 19:23:41 1061
原创 ubuntu conda install xxx 出现问题
Solving environment: failed with initial frozen solve. Retrying with flexible solve.这是出现的问题,然后无法安装这是错误结果解决方法:依次输入以下程序conda config --add channels conda-forgeconda config --set channel_priority f...
2020-01-14 15:07:49 756 2
原创 树莓派python,PIP3安装出现问题
树莓派python,PIP3安装出现问题Could not find a version that satisfies the requirement pypylon (from versions: )No matching distribution found for pypylon方法总结法一:pip3 install 包名-i http://pypi.douban.com/simp...
2019-06-13 19:22:14 3108 3
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人