麦好的AI乐园

机器学习、 智能计算、应用数学

程序员们,AI来了,机会来了,危机也来了

程序员们,AI来了,机会来了,危机也来了 1.人工智能真的来了           纵观古今,很少有计算机技术能有较长的发展寿命,大部分昙花一现,比如:昔日的DOS、windows3.2、foxpro、delphi、80x86汇编,还有很多技术也在艰难地挣扎,比如:VB、PB、Sqlserv...

2017-07-10 17:37:05

阅读数 11098

评论数 29

本博免责声明

本博所处理数据均是通过各种计算机程序自动收集或手动收集所得,仅供机器学习、智能计算爱好者研究智能计算所用,其中具体信息(例如网页、图片、数据等)的版权归作者和发布者所有,本书对信息内容的合法性、准确性、可靠性、完整性概不负责,也不因网页等信息内容引起的纠纷承担任何法律责任。

2013-09-15 15:38:55

阅读数 2792

评论数 0

python3.6-深入浅出视频

【课程收益】 适合人群 python小白,大数据和机器学习编程程序员 上机实践为主线 以最快的速度上手 快速入门,还学到了python3的核心知识 https://edu.csdn.net/course/detail/9897 ...

2018-11-23 13:08:31

阅读数 222

评论数 0

C语言随笔-去掉仅有\n的行

#include <stdio.h> int main(int argc, const char * argv[]) { char str[128]; char *linep; strcpy( str, "12...

2018-10-26 20:16:05

阅读数 254

评论数 1

英文过滤停用词

""" Created on Sun Nov 13 09:14:13 2016 @author: daxiong """ from...

2018-10-23 12:35:12

阅读数 805

评论数 1

sklearn之svm-葡萄酒质量预测(12)

#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sun Oct 14 20:48:28 2018 @author: myhaspl @emai...

2018-10-14 22:15:44

阅读数 358

评论数 0

sklearn之svm-葡萄酒质量预测(11)

本系列以sklearn的svm算法为例,对葡萄酒质量预测,也可换用其它方法,比如随机森林,因为sklearn的机器学习算法调用形式基本差不多,可以自行举一反三。 现在,我们来把训练的模型保存,然后,需要的时候,直接将数据送入模型 ,无需再训练,先来看模型 保存与读入(模型持久化) 模型的持久性 在...

2018-10-14 21:56:45

阅读数 454

评论数 0

sklearn之svm-葡萄酒质量预测(10)

下面我们接着以葡萄酒质量预测为例 ,设置svm参数,提高分类准确率。

2018-10-14 19:44:52

阅读数 537

评论数 0

sklearn之svm-葡萄酒质量预测(9)

SVC数学原理 给定训练向量i=1,…,n,在两个类中,和一个向量,SVC解决了以下原始问题: 可变换为 决策函数为: 上式中的为核。

2018-10-14 18:16:44

阅读数 254

评论数 0

sklearn之svm-葡萄酒质量预测(8)

class sklearn.svm.SVC(C=1.0, kernel=’rbf’, degree=3, gamma=’auto_deprecated’, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200...

2018-10-14 17:54:34

阅读数 739

评论数 0

AI随笔-scala(1)

object learn { def main(args: Array[String]): Unit = { println(myPower(2,4)) } @annotation.tailrec def myPower(x:Int,n:In...

2018-10-10 11:50:06

阅读数 116

评论数 0

决策树与随机森林

决策树(Decision Tree)与随机森林(Random Forest) 决策树是用树的结构来构建分类模型,每个节点代表着一个属性,根据这个属性的划分,进入这个节点的儿子节点,直至叶子节点,每个叶子节点都表征着一定的类别,从而达到分类的目的。 常用的决策树有ID4,C4.5,CART等。在...

2018-10-07 15:49:05

阅读数 937

评论数 0

阿里云随笔(10)-PAI-AutoML

在数据管理中,重新上传完整的白葡萄酒数据。然后可以进入数据开发,写sql代码对数据表进行查询。比如统计训练样本和测试数据的大小。

2018-10-07 15:01:28

阅读数 661

评论数 0

阿里云随笔(8)

下面一步是把训练结果写入oss的文件中,以便查看 首先,写入阿里云oss的操作 #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Create...

2018-10-06 23:10:46

阅读数 110

评论数 0

阿里云随笔(6)

列出oss桶下所有的csv文件: import tensorflow as tf FLAGS = tf.flags.FLAGS tf.flags.DEFINE_string('buckets', 'oss://myhaspl-ai.oss-cn-beijing-internal.aliyun...

2018-10-06 20:58:15

阅读数 99

评论数 0

阿里云随笔(4)

查看模型

2018-10-06 16:42:33

阅读数 129

评论数 0

阿里云随笔(3)

试着在PAI面板中加入2个节点,然后随机森林选择字段,可行 删除节点及连线后,继续加入数据。可直接创建表 最后可查到这2个表

2018-10-06 16:22:31

阅读数 83

评论数 0

阿里云AI随笔(2)

创建表,准备导入本地数据

2018-10-06 13:58:54

阅读数 146

评论数 0

阿里云AI随笔(1)

1.先配置好OSS,并上传样本数据 2.进入机器学习PAI,选择样本数据为OSS中样本数据,进行多分类

2018-10-05 22:32:36

阅读数 140

评论数 0

AI强化学习随笔(2)

gym库是一个测试问题的集合——环境——你可以用它来计算你的强化学习算法。这些环境有一个共享的接口,允许您编写通用算法。 安装 首先,您需要安装Python 3.5+。 pip install gym 从源代码构建 如果您愿意,还可以直接克隆gym Git存储库。当你在修改体育馆或者添加...

2018-10-05 11:34:15

阅读数 91

评论数 0

提示
确定要删除当前文章?
取消 删除