高等微积分教程

1.1 多元函数

1.1.1 重极限与累次极限

定理1.1.1.1 若二重极限存在,则所有存在的累次极限都与它相等。

1.2 多元函数、向量值函数微分

1.2.1 全微分

d u = a 1 d x 1 + a 2 d x 2 + ⋯ + a n d x n \text{d}u=a_1\text{d}x_1+a_2\text{d}x_2+\cdots+a_n\text{d}x_n du=a1dx1+a2dx2++andxn Δ u = d u + o ( ∣ ∣ Δ X ∣ ∣ ) \Delta u=\text{d}u+o(||\Delta \bm{X}||) Δu=du+o(ΔX)

1.2.2 全微分与偏微分

定理1.2.2.1 在平面上,若一个偏导数连续,另一个偏导数存在,则这个点可微。 n n n维空间中,需要 n − 1 n-1 n1个偏导数连续。

定理1.2.2.2 若混合偏导存在且连续,则相等。

1.2.3 向量值函数的微分

向量 Y \bm{Y} Y的全微分公式是 Y = A d X \bm{Y}=\bm{A}\text{d}\bm{X} Y=AdX其中 A \bm{A} A是该点的雅可比矩阵,记为 A = J f ( X ) \bm{A}=\mathcal{J}f(\bm{X}) A=Jf(X)。当 A \bm{A} A是方阵时,有雅克比行列式 D ( Y ) D ( X ) = det ⁡ ( A ) \frac {D(\bm{Y})}{D(\bm{X})}=\det(\bm{A}) D(X)D(Y)=det(A)

1.3 隐函数

1.3.1 隐函数存在性及性质

设有 n n n个函数 F i ( X , Y ) F_i(\bm{X},\bm{Y}) Fi(X,Y),在某个区域内可微。若矩阵 ∂ F ∂ Y \frac{\partial\bm{F}}{\partial{\bm{Y}}} YF可逆,则这个区域内存在可微的隐函数 Y = f ( X ) \bm{Y}=f(\bm{X}) Y=f(X),且 J f ( X ) = − ( ∂ F ∂ Y ) − 1 ∂ F ∂ X \mathcal{J}f(\bm{X})=-(\frac{\partial\bm{F}}{\partial\bm{Y}})^{-1}\frac{\partial\bm{F}}{\partial\bm{X}} Jf(X)=(YF)1XF

1.3.2 反函数

J f − 1 ( Y ) = [ J f ( X ) ] − 1 \mathcal{J}f^{-1}(\bm{Y})=[\mathcal{J}f(\bm{X})]^{-1} Jf1(Y)=[Jf(X)]1

1.4 空间几何

1.4.1 平面与法向量

A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0是一个平面。它的法向量是 n = ( A , B , C ) \bm{n}=(A,B,C) n=(A,B,C)

1.4.2 曲面的切平面

核心策略:构造 z = z 0 + A ( x − x 0 ) + B ( y − y 0 ) z=z_0+A(x-x_0)+B(y-y_0) z=z0+A(xx0)+B(yy0)。其中 A = ∂ z ∂ x A=\frac{\partial z}{\partial x} A=xz B = ∂ z ∂ y B=\frac{\partial z}{\partial y} B=yz

显函数最简单。隐函数使用隐函数方法即可。参数方程使用链式法则即可。

1.5 条件极值

问题定义为求 φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0 f ( x , y ) f(x,y) f(x,y)的极值。由于某,该极值点一定是拉格朗日函数 L L L的驻点。 L ( x , y , λ ) = f ( x , y ) + λ φ ( x , y ) L(x,y,\lambda)=f(x,y)+\lambda\varphi(x,y) L(x,y,λ)=f(x,y)+λφ(x,y)

1.6 泰勒展开与极值分析

2.1 一致性

对于所有差值,覆盖的差值有限。(读不懂吗,读不懂就对了)

对于所有带状域,???

2.2 含参积分

极限向积分符号移动 lim ⁡ y ∫ d x = ∫ lim ⁡ y d x \lim_y\int \text{d}x=\int\lim_y\text{d}x ylimdx=ylimdx

参数求导 d d y ∫ α β d x = ∫ α β ∂ ∂ y d x + ( β , y ) β ′ − ( α , y ) α ′ \frac{\text{d}}{\text{d}y}\int_\alpha^\beta\text{d}x=\int_\alpha^\beta\frac{\partial}{\partial y}\text{d}x+(\beta,y)\beta'-(\alpha,y)\alpha' dydαβdx=αβydx+(β,y)β(α,y)α

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值