量子力学(5) 时间无关的扰动理论

文章探讨了在量子力学中处理简并态的能量计算和波函数修正的方法,主要涉及扰动理论的一阶和二阶近似。一阶能量近似通常较为准确,但波函数的近似较差。对于能量简并的情况,文章详细阐述了简并扰动理论,解释了如何处理两个简并本征态的能量和波函数组合,并给出了解决简并问题的数学公式和矩阵表示。此外,还提到了克拉默关系在解决这类问题中的应用。
摘要由CSDN通过智能技术生成

扰动。

级数法。

新E级数的第一项就是 H ′ H' H在原来状态下的期望。

现在来看怎么计算波函数。.这很好那个这个波函数可以被构造由老波函数的张空间。

然后左内积一个 ψ l \psi_l ψl,假设 l = n l=n l=n(不行)、 l ≠ n l\ne n l=n就万事大吉了。最后 ψ n 1 \psi_n^1 ψn1 ψ m 0 \psi_m^0 ψm0的系数就是 ⟨ H ⟩ m n / ( E n − E m ) \braket{H}_{mn}/(E_n-E_m) Hmn/(EnEm)

观察之,如果所有能量都不同就好。有相同的就坏了。这时,我们只需要简并扰动理论就行了。

一阶能量近似好像经常挺准的,但是一阶波函数近似非常的烂。

T8之后直接到27。

现在来看二阶近似。好吧,只算能量,波函数不算了?行吧。

把那几个公式过程和答案抄在一张纸上。

简并扰动理论

现在我们同时关心两个简并的本征态。就是说它们的能量一样。它们组合起来的一般态能量都一样。

但是我们不知道怎么组合。干脆就叫它 ψ \psi ψ好了。 ψ = α ψ a + β ψ b \psi=\alpha \psi_a+\beta\psi_b ψ=αψa+βψb。还是用级数法,左内积 ψ a \psi_a ψa ψ b \psi_b ψb得到两个形式一样的公式。然后再把合成式子带进去。结果就是(AB式) α E 1 = α ⟨ H ′ ⟩ a a + β ⟨ H ′ ⟩ a b \alpha E^1=\alpha\braket{H'}_{aa}+\beta\braket{H'}_{ab} αE1=αHaa+βHab β E 1 = α ⟨ H ′ ⟩ b a + β ⟨ H ′ ⟩ b b \beta E^1=\alpha\braket{H'}_{ba}+\beta\braket{H'}_{bb} βE1=αHba+βHbb

但是两个希腊字母不确定。先消β再消α。 β W a b E 1 = α W a b W b a + β W a b W b b \beta W_{ab}E^1=\alpha W_{ab}W_{ba}+\beta W_{ab}W_{bb} βWabE1=αWabWba+βWabWbb ( α E 1 − α W a a ) E 1 = α W a b W b a + ( α E 1 − α W a a ) W b b (\alpha E^1-\alpha W_{aa})E^1=\alpha W_{ab}W_{ba}+(\alpha E^1-\alpha W_{aa})W_{bb} (αE1αWaa)E1=αWabWba+(αE1αWaa)Wbb如果 α ≠ 0 \alpha\ne 0 α=0两边可以除掉之: ( E 1 ) 2 − ( W a a + W b b ) E 1 + W a a W b b − W a b W b a = 0 (E^1)^2-(W_{aa}+W_{bb})E^1+W_{aa}W_{bb}-W_{ab}W_{ba}=0 (E1)2(Waa+Wbb)E1+WaaWbbWabWba=0 ( E 1 ) 2 − ( W a a + W b b ) E 1 + W a a W b b − ∣ W a b ∣ 2 = 0 (E^1)^2-(W_{aa}+W_{bb})E^1+W_{aa}W_{bb}-|W_{ab}|^2=0 (E1)2(Waa+Wbb)E1+WaaWbbWab2=0用一元二次方程求根公式就可以了。得到普遍DPT公式。

如果 α = 0 \alpha=0 α=0怎么办捏,代入AB式首先可见 W a b = 0 W_{ab}=0 Wab=0,然后直接 E 1 = W b b E^1=W_{bb} E1=Wbb(这也符合普遍DPT公式)。这样其实就没有简并了,就是说他们是良民。所以如果我们一开始就知道他们是良民,就不用DPT了。

假设 A A A是厄米算符并且和 H H H H ′ H' H对易。 ψ a \psi_a ψa ψ b \psi_b ψb H H H简并,同时他们也是 A A A的本征函数,但是本征值不同,分别是 μ \mu μ ν \nu ν。那么 ⟨ [ A , H ′ ] ⟩ a b = 0 = ⟨ a ∣ A H ′ b ⟩ − ⟨ a ∣ H ′ A b ⟩ = μ ⟨ a ∣ H ′ b ⟩ − ν ⟨ a ∣ H ′ b ⟩ = ( μ − ν ) W a b \begin{aligned}\braket{[A,H']}_{ab}&=0\\&=\lang a|AH'b\rang-\lang a|H'Ab\rang\\&=\mu\lang a|H'b\rang-\nu\lang a|H'b\rang\\&=(\mu-\nu)W_{ab}\end{aligned} [A,H]ab=0=aAHbaHAb=μaHbνaHb=(μν)Wab由于 μ ≠ ν \mu\ne\nu μ=ν,所以 W a b W_{ab} Wab必须是 0 0 0。那么 ψ a \psi_a ψa ψ b \psi_b ψb是良民。

事实上,可使用矩阵 W a a , W a b , W b a , W b b W_{aa},W_{ab},W_{ba},W_{bb} Waa,Wab,Wba,Wbb来表示 W \bm{W} W。然后 E 1 E^1 E1就是它的特征值,然后它的特征向量就是好的线性组合。

克拉默关系: s + 1 n 2 ⟨ r 2 ⟩ − ( 2 s + 1 ) a ⟨ r s − 1 ⟩ + s 4 [ ( 2 l + 1 ) 2 − s 2 ] a 2 ⟨ r s − 2 ⟩ = 0 \frac{s+1}{n^2}\braket{r^2}-(2s+1)a\braket{r^{s-1}}+\frac s 4\left[(2l+1)^2-s^2\right]a^2\braket{r^{s-2}}=0 n2s+1r2(2s+1)ars1+4s[(2l+1)2s2]a2rs2=0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值