目 录
统计描述
T检验
方差分析
聚类与判别分析
二项分布
相关与回归
因素分析
非参数检验
X2检验
生存分析
定量资料的统计描述 N个连续型变量数据,分析结果:极差,最大值,最小值,算数平均数mean,几何均数geometric mean,中位数Median,标准差std.deviation,描述其频数分布特征的茎叶图;frenquencies 可做出描述其频数分布特征的柱状图,而descriptive不能描述频数分布特征。(定理:两个正数的算术平均数不小于它们的几何平均数。n个数连乘积的n次方根就是几何平均数)。
t检验
1.单样本均数的T检验单样本均数与已知总体均数间的比较;
2.配对资料的T检验 两种情况:
3.两独立样本T检验两组资料来自两个研究总体,其检验方法不同;
方差分析
1.单因素方差分析 两个以上样本的均值比较,成组设计中只有一个研究因素;
2.两因素方差分析 配伍组设计。
聚类与判别分析
聚类分析 比较各个事物间的性质。例如已知菌痢发病数按月分布,用k-Means Cluster法将各月分成流行月份和非流行月份两类;
判别分析 根据已知类别的事物的性质,建立函数式,对未知类别的新事物进行判断、归类。
二项分布与Poisson分布
实验中只有对立的两类结果,如生与死、男与女、阴与阳等。其中某一类结果发生的概率π为一个常数。Poisson分布可看作是二项分布的一种特殊情况。
相关与回归 是研究不同变量间关系的统计方法。相关表示相互关系,回归表示从属关系。就一般应用程序而言,须先确定有相关存在,进而做回归分析。
1.直线回归 体重与肺活量之间有无直线关系;
2.直线相关 体重与肺活量之间有无直线相关关系;
3.曲线拟合 不能辨别变量之间的准确关系时,首先将数据绘成散点图,根据图形的分布特点,选择最接近的函数模型;
4.等级相关 适合资料:a.不符合正态分布;b.总体分布型未知;c.等级表示的原始资料;
5.秩回归 与等级相关应用条件同;
6.多元线性回归 研究一个应变量对多个自变量的线性依存关系;
7.logistic回归 分析某事件发生的概率与自变量之间的关系,如探讨疾病发生与否和暴露因素间的关系。
因子分析 对多个变量进行大量观察时,用少数几个因子(综合指标)来描述许多指标或因素之间的联系(提取公因式)。
非参数检验,秩和检验 在总体不服从正态分布且分布情况不明时,检验数据资料是否来自同一个总体假设。
X²检验
1.四格表资料的X²检验(n=样本含量;T=每个格子中的理论频数)
2.行×列表X²检验 R×C列表资料,T>=5或1<T<5的格子数不超过总格子数的1/5,当有 T<1或1<T<5的格子较多时,可采用并行并列、删行删列、增大样本含量的办法使其符合行X列表资料卡方检验的应用条件。
X²=n[(A11/n1n1+A12/n1n2+...+Arc/nrnc)-1]
3.构成比的X²检验
4.双向有序分类资料的关联性检验
生存分析
1、Kaplan-Meier法
2、两组比较的非参数检验法
3、cox回归分析