常用统计检验方法

1. 参数检验

以下检验方法往往需要基于随机变量服从某个指定分布的条件,或要求已知某些参数,如总体方差、总体均值。

1.1 Z检验
1.1.1 单正态样本的Z检验

X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,,Xn为来自正态总体 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)的一个样本, X ˉ \bar{X} Xˉ为样本均值。则构建统计量如下:

Z = X ˉ − μ σ / n ∼ N ( 0 , 1 ) Z=\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1) Z=σ/n XˉμN(0,1)

在总体方差 σ 2 \sigma^2 σ2已知的情况下估计、检验总体均值 μ \mu μ

1.1.2 双正态样本的Z检验

X 1 , X 2 , … , X n 1 X_{1}, X_{2}, \ldots, X_{n_1} X1,X2,,Xn1为来自正态总体 X ∼ N ( μ 1 , σ 1 2 ) X \sim N(\mu_1, \sigma_1^2) XN(μ1,σ12)的一个样本; Y 1 , Y 2 , … , Y n 2 Y_{1}, Y_{2}, \ldots, Y_{n_2} Y1,Y2,,Yn2为来自正态总体 Y ∼ N ( μ 2 , σ 2 2 ) Y \sim N(\mu_2, \sigma_2^2) YN(μ2,σ22)的一个样本,构建统计量如下:

Z = ( X ˉ − Y ˉ ) − ( μ 1 − μ 2 ) σ 1 2 n 1 + σ 2 2 n 2 ∼ N ( 0 , 1 ) Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1) Z=n1σ12+n2σ22 (XˉYˉ)(μ1μ2)N(0,1)

若X和Y等方差,即 σ 1 2 = σ 2 2 = σ 2 \sigma_1^2 = \sigma_2^2 = \sigma^2 σ12=σ22=σ2,上述统计量简化为:

Z = ( X ˉ − Y ˉ ) − ( μ 1 − μ 2 ) σ 1 n 1 + 1 n 2 ∼ N ( 0 , 1 ) Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sigma\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0,1) Z=σn11+n21 (XˉYˉ)(μ1μ2)N(0,1)

在总体方差 σ 1 2 \sigma_1^2 σ12 σ 2 2 \sigma_2^2 σ22均已知的情况下估计、检验两个正态总体的均值差 μ 1 − μ 2 \mu_1 - \mu_2 μ1μ2。往往检验假设 μ 1 − μ 2 = 0 \mu_1 - \mu_2 = 0 μ1μ2=0,从而检验两个总体的均值的差异是否显著。

1.2 t检验
1.2.1 单正态样本t检验

X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,,Xn为来自正态总体 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)的一个样本, X ˉ \bar{X} Xˉ为样本均值, S 2 S^2 S2为样本方差。构建统计量如下:

t = X ˉ − μ S / n ∼ t ( n − 1 ) t = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t(n-1) t=S/n Xˉμt(n1)

在总体方差 σ 2 \sigma^2 σ2未知的情况下估计、检验总体均值 μ \mu μ

1.2.2 双正态样本t检验

X 1 , X 2 , … , X n 1 X_{1}, X_{2}, \ldots, X_{n_1} X1,X2,,Xn1为来自正态总体 X ∼ N ( μ 1 , σ 2 ) X \sim N(\mu_1, \sigma^2) XN(μ1,σ2)的一个样本; Y 1 , Y 2 , … , Y n 2 Y_{1}, Y_{2}, \ldots, Y_{n_2} Y1,Y2,,Yn2为来自正态总体 Y ∼ N ( μ 2 , σ 2 ) Y \sim N(\mu_2, \sigma^2) YN(μ2,σ2)的一个样本,则构建统计量如下:

t = ( X ˉ − Y ˉ ) − ( μ 1 − μ 2 ) S w 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) t = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_w\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1+n_2-2) t=Swn11+n21 (XˉYˉ)(μ1μ2)t(n1+n22)

其 中 S w 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 其中 \quad S_w^2=\frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2} Sw2=n1+n22(n11)S12+(n21)S22

(即方差的加权平均数,称为合并方差 pooled variance) \text{(即方差的加权平均数,称为合并方差 pooled variance)} (即方差的加权平均数,称为合并方差 pooled variance

故在总体方差 σ 2 \sigma^2 σ2未知但必须相等的情况下估计、检验两个等方差 / 方差齐性的正态总体均值差 μ 1 − μ 2 \mu_1 - \mu_2 μ1μ2。往往检验假设 μ 1 − μ 2 = 0 \mu_1 - \mu_2 = 0 μ1μ2=0,从而检验两个总体的均值的差异是否显著。

1.2.3 成对样本t检验

从独立的随机变量X和Y中获取n对观察结果组成的样本 ( X 1 , Y 1 ) , ( X 2 , Y 2 ) , … , ( X n , Y n ) (X_1, Y_1),(X_2, Y_2),\ldots,(X_n, Y_n) (X1,Y1),(X2,Y2),,(Xn,Yn),往往认为每对数据的差独立,且服从同一个正态分布,即 D i = X i − Y i ∼ N ( μ D , σ D 2 ) D_i = X_i - Y_i \sim N(\mu_D,\sigma_D^2) Di=XiYiN(μD,σD2)。则构建统计量:

t = D ˉ − μ D S D / n t = \frac{\bar{D}-\mu_D}{S_D / \sqrt{n}} t=SD/n DˉμD

往往检验假设 μ D = 0 \mu_D = 0 μD=0,即检验每对数据之差的总体期望与0是否有显著差异,进而推断X和Y的期望是否有显著差异。

1.2.4 皮尔逊相关系数t检验

从独立的两个正态随机变量X和Y中获取n对观察结果组成的样本 ( X 1 , Y 1 ) , ( X 2 , Y 2 ) , … , ( X n , Y n ) (X_1, Y_1),(X_2, Y_2),\ldots,(X_n, Y_n) (X1,Y1),(X2,Y2),,(Xn,Yn) μ X \mu_{X} μX μ Y \mu_{Y} μY分别为随机变量X和Y的总体期望; σ X 2 \sigma^2_{X} σX2 σ Y 2 \sigma^2_{Y} σY2分别为随机变量X和Y的总体方差; X ˉ \bar{X} Xˉ Y ˉ \bar{Y} Yˉ为样本均值; S X 2 S^2_X SX2 S Y 2 S^2_Y SY2为样本方差。

定义皮尔逊相关系数(Pearson correlation coefficient, PCC)为:

ρ X , Y = cov ⁡ ( X , Y ) σ X σ Y = E [ ( X − μ X ) ( Y − μ Y ) ] σ X σ Y \rho_{X, Y} = \frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}} = \frac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_{X} \sigma_{Y}} ρX,Y=σXσYcov(X,Y)=σXσYE[(XμX)(YμY)]

PCC衡量了XY的线性相关性,其值在-1和+1之间,距离-1越近说明X和Y负相关性越大,距离+1越近说明X和Y正相关性越大。样本PCC如下:

r X Y = ∑ i = 1 n ( X i − Y ˉ ) ( Y i − Y ˉ ) ∑ i = 1 n ( X i − X ˉ ) 2 ∑ i = 1 n ( Y i − Y ˉ ) 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ s x ) ( y i − y ˉ s y ) = ∑ x i y i − n x ˉ y ˉ ( n − 1 ) s x s y r_{XY}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{Y}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}} =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right) =\frac{\sum x_{i} y_{i}-n \bar{x} \bar{y}}{(n-1) s_{x} s_{y}} rXY=i=1n(XiXˉ)2 i=1n(YiYˉ)2 i=1n(XiYˉ)(YiYˉ)=n11i=1n(sxxixˉ)(syyiyˉ)=(n1)sxsyxiyinxˉyˉ

针对样本PCC构建统计量:

t = r X Y − ρ X , Y S r = r X Y − ρ X , Y 1 − r X Y 2 / n − 2 ∼ t ( n − 2 ) t = \frac{r_{XY} - \rho_{X,Y}}{S_r} = \frac{r_{XY} - \rho_{X, Y}}{\sqrt{1-r_{XY}^2} / \sqrt{n-2}} \sim t(n-2) t=SrrXYρX,Y=1rXY2 /n2 rXYρX,Yt(n2)

往往检验假设 ρ X , Y = 0 \rho_{X,Y} = 0 ρX,Y=0,进而推断X和Y是否线性相关。

1.3 χ 2 \chi^2 χ2检验
1.3.1 单正态样本 χ 2 \chi^2 χ2检验

X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,,Xn为来自正态总体 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)的一个样本, X ˉ \bar{X} Xˉ为样本均值, S 2 S^2 S2为样本方差。构建统计量:

χ 2 = ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \chi^2=\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) χ2=σ2(n1)S2χ2(n1)

在总体均值 μ \mu μ未知的情况下估计、检验总体方差 σ 2 \sigma^2 σ2

1.4 F检验
1.4.1 双正态样本F检验

X 1 , X 2 , … , X n 1 X_{1}, X_{2}, \ldots, X_{n_1} X1,X2,,Xn1为来自正态总体 X ∼ N ( μ 1 , σ 1 2 ) X \sim N(\mu_1, \sigma_1^2) XN(μ1,σ12)的一个样本, X ˉ \bar{X} Xˉ为样本均值, S 1 2 S_1^2 S12为样本方差; Y 1 , Y 2 , … , Y n 2 Y_{1}, Y_{2}, \ldots, Y_{n_2} Y1,Y2,,Yn2为来自正态总体 Y ∼ N ( μ 2 , σ 2 2 ) Y \sim N(\mu_2, \sigma_2^2) YN(μ2,σ22)的一个样本, Y ˉ \bar{Y} Yˉ为样本均值, S 2 2 S_2^2 S22为样本方差。构建统计量如下:

F = S 1 2 / S 2 2 σ 1 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) F = \frac{S_1^2 / S_2^2}{\sigma_1^2 / \sigma_2^2} \sim F(n_1-1, n_2-1) F=σ12/σ22S12/S22F(n11,n21)

在总体均值 μ 1 \mu_1 μ1 μ 2 \mu_2 μ2均未知的情况下估计、检验两个正态总体方差的比值 σ 1 2 / σ 2 2 \sigma_1^2 / \sigma_2^2 σ12/σ22。往往检验假设 σ 1 2 / σ 2 2 = 1 \sigma_1^2 / \sigma_2^2 = 1 σ12/σ22=1,从而检验两个正态总体是否等方差(方差齐性)。

常见做法:先用F检验确定两个正态总体方差齐性,再通过1.2.2 双正态样本t检验检验两个正态总体的均值是否无显著差异,从而获知两个正态总体相同。

2. 非参检验(non-parametric tests)

以下检验方法不需要基于随机变量服从某个指定分布的条件,也不需要已知某些参数,如总体方差、总体均值。

2.1 符号检验(Sign Test)

从独立的随机变量X和Y中获取n对观察结果组成的样本 ( X 1 , Y 1 ) , ( X 2 , Y 2 ) , … , ( X n , Y n ) (X_1, Y_1),(X_2, Y_2),\ldots,(X_n, Y_n) (X1,Y1),(X2,Y2),,(Xn,Yn),往往认为每对数据的差是独立同分布的,即 D i = X i − Y i a r e I I D D_i = X_i - Y_i \quad are \quad IID Di=XiYiareIID。但 D i D_i Di并不一定如1.2.3 成对样本t检验中所假设的那样服从正态分布。直接把 D i D_i Di为正数或为负数的个数作为一个统计量,记为 n + n_+ n+ n − n_- n

假设样本X和样本Y的总体期望差异不显著,则每对数据之差 D i D_i Di应对称分布在0点两侧,即 D i D_i Di为正数和负数的个数应近似相等。因此 D i > 0 D_i>0 Di>0 D i < 0 D_i<0 Di<0的个数均应服从二项分布(类比掷硬币): n + o r n − ∼ b ( n , 0.5 ) n_+ \quad or \quad n_- \sim b(n,0.5) n+ornb(n,0.5)

根据二项分布的定义:

P { n + o r n − = k } = C n k 0. 5 k 0. 5 n − k P\{n_+ \quad or \quad n_- = k\} = C_n^k0.5^k0.5^{n-k} P{n+orn=k}=Cnk0.5k0.5nk

则可以根据成对的样本数据中每对数据之差 D i D_i Di大于0或小于0的个数k计算对应的概率,作为p值检验样本X和样本Y的总体期望没有显著差异的假设:若 D i D_i Di为正数的个数过多(或为负数的个数过少),则说明X的总体期望偏向于大于Y;反之 D i D_i Di为正数的个数过少(或为负数的个数过多),则说明X的总体期望偏向于小于Y。

2.2 Wilcoxon秩和检验(Wilcoxon rank-sum test)

X 1 , X 2 , … , X n 1 X_{1}, X_{2}, \ldots, X_{n_1} X1,X2,,Xn1为来自总体 X X X的一个样本; Y 1 , Y 2 , … , Y n 2 Y_{1}, Y_{2}, \ldots, Y_{n_2} Y1,Y2,,Yn2为来自总体 Y Y Y的一个样本。将两个样本数据混合在一起后从大到小排序,样本X的数据在其中的下标(即秩)的和,减去 n 1 ( n 1 + 1 ) / 2 n_1(n_1+1)/2 n1(n1+1)/2(即样本X的数据均排在样本Y前的情况)后称为样本X的秩和(Rank Sum)。

若样本X的秩和过大,说明X的总体期望偏向于大于Y;反之样本X的秩和过小,说明X的总体期望偏向于小于Y(若样本X的秩和为0,则几乎可以确定X的期望小于Y)。秩和的分布可以通过排列组合精确计算,也可以通过置换检验获得的经验分布进行计算。

举例:
对于两组数据,A组: 1 , 3 \color{red}{1,3} 1,3;B组: 2 , 4 , 6 , 5 \color{blue}{2,4,6,5} 2,4,6,5。两组数据混合后排序: 1 , 2 , 3 , 4 , 5 , 6 \color{red}{1},\color{blue}{2},\color{red}{3},\color{blue}{4,5,6} 1,2,3,4,5,6。则A组数据的秩和 R S ( A ) = 1 + 3 − ( 2 ∗ 3 ) / 2 = 1 RS(A) = 1 + 3 - (2*3)/2 = 1 RS(A)=1+3(23)/2=1。将这六个数混合后重新分为A、B两组,所有的分组情况和对应每种情况中A组的秩和如下:

ABRS(A)
1,23,4,5,60
1,32,4,5,61
1,42,3,5,62
1,52,3,4,63
1,62,3,4,54
2,31,4,5,62
2,41,3,5,63
2,51,3,4,64
2,61,3,4,55
3,41,2,5,64
3,51,2,4,65
3,61,2,4,56
4,51,2,3,66
4,61,2,3,57
5,61,2,3,48

对于所有15种分组情况,A组数据的秩和小于等于1的个数只有2种,即 P { R S ( A ) ≤ 1 } = 2 / 15 ≈ 0.133 P\{RS(A) \le 1\} = 2/15 \approx 0.133 P{RS(A)1}=2/150.133,因此可以在显著性水平0.133上认为A组数据的均值显著比B组小。

2.3 Wilcoxon符号秩检验(Wilcoxon signed-rank test)

从独立的随机变量X和Y中获取n对观察结果组成的样本 ( X 1 , Y 1 ) , ( X 2 , Y 2 ) , … , ( X n , Y n ) (X_1, Y_1),(X_2, Y_2),\ldots,(X_n, Y_n) (X1,Y1),(X2,Y2),,(Xn,Yn),往往认为每对数据的差是独立同分布的,即 D i = X i − Y i a r e I I D D_i = X_i - Y_i \quad are \quad IID Di=XiYiareIID。构建统计量如下:将 ∣ D i ∣ |D_i| Di进行排序后, D i D_i Di为正数或负数的下标(即秩)相加,称为“符号秩”(signed-rank)。该方法相当于结合了2.1 符号检验2.2 Wilcoxon秩和检验

若正数的符号秩过大(或负数的符号秩过小),说明 D i D_i Di偏向于大于零,即X偏向于大于Y;反之正数的符号秩过小(或负数的符号秩过大),说明 D i D_i Di偏向于小于零,即X偏向于小于Y。因此对符号秩的检验,可以间接证明X和Y的总体期望是否有显著差异。符号秩的分布可以通过排列组合精确计算,也可以通过置换检验获得的经验分布进行计算。

2.4 分布检验

下面几个方法就是检验随机变量X是否符合某个分布的。

2.4.1 χ 2 \chi^2 χ2拟合优度检验(Goodness-of-fit Test)

对随机变量X进行n次独立试验,将样本分为k个区间(bin)。 p 1 , p 2 , … , p k p_1,p_2,\ldots,p_k p1,p2,,pk为这k个区间上事件发生的概率, T i = n p i T_i = np_i Ti=npi为每个区间上事件发生的理论频数; f 1 , f 2 , … , f k f_1,f_2,\ldots,f_k f1,f2,,fk为这n次试验中每个区间上事件发生的次数,故 f 1 / n , f 2 / n , … , f k / n f_1/n,f_2/n,\ldots,f_k/n f1/n,f2/n,,fk/n即为每个区间上事件发生的频率。构建统计量衡量频率与概率的差距(也为样本频数和理论频数的差距):

χ 2 = ∑ i = 1 k ( f i − T i ) 2 T i = ∑ i = 1 k n p i ( f i n − p i ) 2 = ∑ i = 1 k f i 2 T i − n \chi^2 = \sum_{i=1}^{k} \frac{(f_i-T_i)^2}{T_i} = \sum_{i=1}^{k} \frac{n}{p_i}\left(\frac{f_i}{n}-p_i\right)^{2} = \sum_{i=1}^{k} \frac{f_{i}^{2}}{T_i}-n χ2=i=1kTi(fiTi)2=i=1kpin(nfipi)2=i=1kTifi2n

当n足够大( n ≥ 50 n \ge 50 n50)时,上述统计量服从 χ 2 ( k − 1 ) \chi^2(k-1) χ2(k1)分布。若随机变量X服从某个想要检验的分布,则实际发生的频率与分布概率差距就不能过大,即上述统计量不得过大。因此常通过想要检验的分布的分布函数计算指定区间上的概率 p i p_i pi或理论频数 T i T_i Ti,之后根据样本检验上述统计量是否过大(具体值根据显著性 α \alpha α的要求决定,即 χ 2 ≥ χ 1 − α 2 \chi^2 \ge \chi_{1-\alpha}^2 χ2χ1α2 ),从而检验随机变量X是否服从指定分布。

使用该方法进行分布拟合检验时,应注意以下几点:

  • 若指定的分布函数中有r个根据样本估计出的参数,则统计量的自由度降为k-1-r。
  • 实施该检验时最好保证每个区间内事件发生的理论频数 T i T_i Ti和样本频数 f i f_i fi均在5以上,否则对区间进行合并。
2.4.2 偏度、峰度检验

随机变量X的标准化变量 X − E ( X ) D ( X ) \frac{X-E(X)}{\sqrt{D(X)}} D(X) XE(X)的三阶矩和四阶矩分别称为该变量的总体偏度 ν 1 \nu_1 ν1和总体峰度 ν 2 \nu_2 ν2

ν 1 = E [ ( X − E ( X ) D ( X ) ) 3 ] = E [ ( X − E ( X ) ) 3 ] [ D ( X ) ] 3 / 2 \nu_{1}=E\left[\left(\frac{X-E(X)}{\sqrt{D(X)}}\right)^{3}\right]=\frac{E\left[(X-E(X))^{3}\right]}{[D(X)]^{3 / 2}} ν1=E(D(X) XE(X))3=[D(X)]3/2E[(XE(X))3]

ν 2 = E [ ( X − E ( X ) D ( X ) ) 4 ] = E [ ( X − E ( X ) ) 4 ] [ D ( X ) ] 2 \nu_{2}=E\left[\left(\frac{X-E(X)}{\sqrt{D(X)}}\right)^{4}\right]=\frac{E\left[(X-E(X))^{4}\right]}{[D(X)]^{2}} ν2=E(D(X) XE(X))4=[D(X)]2E[(XE(X))4]

X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_n X1,X2,,Xn为随机变量X的一个样本, X ˉ \bar{X} Xˉ为样本均值,样本的k阶中心矩为 B k = 1 n ∑ i = 1 n ( X i − X ˉ ) k B_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{k} Bk=n1i=1n(XiXˉ)k,样本偏度 G 1 G_1 G1和样本峰度 G 2 G_2 G2如下:

G 1 = B 3 / B 2 3 / 2 G 2 = B 4 / B 2 2 G_1 = B_3 / B_2^{3/2} \qquad G_2 = B_4 / B_2^2 G1=B3/B23/2G2=B4/B22

若随机变量X服从正态分布,则 ν 1 = 0 , ν 2 = 3 \nu_{1}=0, \nu_{2}=3 ν1=0,ν2=3,且其样本偏度 G 1 G_1 G1和样本峰度 G 2 G_2 G2也服从正态分布:

G 1 ∼ N ( 0 , 6 ( n − 2 ) ( n + 1 ) ( n + 3 ) ) G_1 \sim N(0, \frac{6(n-2)}{(n+1)(n+3)}) G1N(0,(n+1)(n+3)6(n2))

G 2 ∼ N ( 3 − 6 n + 1 , 24 n ( n − 2 ) ( n − 3 ) ( n + 1 ) 2 ( n + 3 ) ( n + 5 ) ) G_2 \sim N(3-\frac{6}{n+1}, \frac{24n(n-2)(n-3)}{{(n+1)}^2(n+3)(n+5)}) G2N(3n+16,(n+1)2(n+3)(n+5)24n(n2)(n3))

常通过1.1.1 单正态样本的Z检验检验假设 μ G 1 = 0 \mu_{G_1} = 0 μG1=0 μ G 2 = 3 − 6 n + 1 \mu_{G_2} = 3-\frac{6}{n+1} μG2=3n+16,从而推断随机变量X是否服从正态分布。

2.5 独立性检验

统计推断还有一大类问题为对两个随机变量进行关联性分析,即推断两个随机变量是否独立,常用方法见下。

2.5.1 列联表 χ 2 \chi^2 χ2检验

对两个变量组成的 r × c r \times c r×c列联表进行检验,判断两个变量是否互相独立。若两个变量独立,则列联表中每个单元格中的理论频数为 E i j = n p i ⋅ p ⋅ j E_{ij}=np_{i \cdot}p_{\cdot j} Eij=npipj p i ⋅ p_{i \cdot} pi p ⋅ j p_{\cdot j} pj分别为第 i i i行和第 j j j列的边缘概率。思想类似2.4.1 χ 2 \chi^2 χ2拟合优度检验,构建统计量衡量每个单元格的样本频数和理论频数的差距:

χ 2 = ∑ i , j ( O i j − E i j ) 2 E i j \chi^{2}=\sum_{i, j} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}} χ2=i,jEij(OijEij)2

上述统计量服从 χ 2 [ ( r − 1 ) × ( c − 1 ) ] \chi^2[(r-1)\times(c-1)] χ2[(r1)×(c1)]分布。假设行变量和列变量独立,则基于该假设计算出的理论频数与样本的频数的差距就不能过大,即上述统计量不得过大。因此常通过检验该统计量是否过大(具体值根据显著性 α \alpha α的要求决定,即 χ 2 ≥ χ 1 − α 2 \chi^2 \ge \chi_{1-\alpha}^2 χ2χ1α2),从而检验行变量和列变量是否独立。

2.5.2 Fisher精确检验(Fisher’s Exact Test)

对于一个列联表,为了检验列变量和行变量是否独立,则可以计算出与样本一致或更极端的情况的可能性作为p值来检验假设。而对于一个 2 × 2 2 \times 2 2×2的列联表,概率的计算可以通过超几何分布实现。如对于下面的列联表:

α \alpha α β \beta β行加和
Aaba+b
Bcdc+d
列加和a+cb+da+b+c+d=n

可以将这种表格理解为超几何分布,即n个物体中有a+b个A类物品,从中抽取a+c个( α \alpha α列),其中A类物品有a个。则该事件发生的概率为:

P { X = a ∣ n , a + b , a + c } = C a + b a C c + d c C n a + c P\{ X=a | n,a+b,a+c \} = \frac{C_{a+b}^aC_{c+d}^c}{C_{n}^{a+c}} P{X=an,a+b,a+c}=Cna+cCa+baCc+dc

加和样本和更极端的情况的概率( P { X ≤ a } P\{X\le a\} P{Xa} P { X ≥ a } P\{X \ge a\} P{Xa}),作为p值检验行变量和列变量是否独立。

举例:
一个对男女是否节食的调查结果如下表:

行加和
节食1910
不节食11314
列加和121224

上表的情况发生的概率(24个人中有10个人节食,12个男性,男性中仅有1个人节食的概率):

P { X = 1 ∣ 24 , 10 , 12 } = C 10 1 C 14 11 C 24 12 P\{ X=1 | 24,10,12 \} = \frac{C_{10}^1 C_{14}^{11}}{C_{24}^{12}} P{X=124,10,12}=C2412C101C1411

看出男性节食的相对较少,但比上表还有一种更极端的情况如下:

行加和
节食01010
不节食12214
列加和121224

上表的情况发生的概率(24个人中有10个人节食,12个男性,男性中没有人节食的概率):

P { X = 1 ∣ 24 , 10 , 12 } = C 10 0 C 14 12 C 24 12 P\{ X=1 | 24,10,12 \} = \frac{C_{10}^0 C_{14}^{12}}{C_{24}^{12}} P{X=124,10,12}=C2412C100C1412

因此若找24个人,其中有10个人节食,12个男性,男性节食的人数小于等于1的概率:

P { X ≤ 1 ∣ 24 , 10 , 12 } = C 10 0 C 14 12 C 24 12 + C 10 0 C 14 12 C 24 12 ≈ 0.00138 P\{ X \le 1 | 24,10,12 \} = \frac{C_{10}^0 C_{14}^{12}}{C_{24}^{12}} + \frac{C_{10}^0 C_{14}^{12}}{C_{24}^{12}} \approx 0.00138 P{X124,10,12}=C2412C100C1412+C2412C100C14120.00138

可以拒绝零假设(男女节食没有差异),认为男性的节食人数显著比女性少,p值为0.00138。

  • 1
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值