目录
2、key/value搜索模型(节点既存key又存value)
一、二叉搜索树的概念
二叉搜索树又称二叉排序树。
空树是二叉搜索树,如果一棵树不是空树,需要满足如下情况便可称其为二叉搜索树:
1、左子树上每一个键值均小于根节点;
2、右子树上每一个键值均大于根节点;
3、左右子树均为二叉搜索树。
二、二叉搜索树的性能分析
它可以用来排序 – 由于二叉搜索树的左子树都小于根,右子树都大于根,所以如果对二叉搜索树进行中序遍历得到的数据天然就是有序的。
对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二 叉搜索树的深度的函数,即结点越深,则比较次数越多。 但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:
- 最优情况下,二叉搜索树为完全二叉树 (或者接近完全二叉树),其平均比较次数为 O(logN)。
- 最差情况下,二叉搜索树退化为单支树( 或者类似单支),其平均比较次数为 O(N)。
- 所以,二叉搜索树进行查找的时间复杂度为 O(N)。
可能有的同学会想,既然二叉搜索树查找的时间复杂度为 O(N),那我们为什么不直接用二分查找呢?毕竟二分查找的时间复杂度可是 O(logN),这是因为二分查找存在许多限制:
- 二分查找要求数据必须有序;
- 二分查找使用顺序表进行数据存储,插入、删除数据效率低,而在实际开发中,我们是要经常插入删除数据的;
问题:如果退化成单支树,二叉搜索树的性能就失去了。那能否进行改进,不论按照什么次序插 入关键码,二叉搜索树的性能都能达到最优?那么我们后续章节学习的AVL树和红黑树就可以上场了。
三、二叉搜索树的中序遍历用于排序+去重
通过上面那张图不难发现,用二叉搜索树走个中序,就是升序+去重排序,这也是二叉搜索树又被称为二叉排序树的原因。
使用InOrder调用_InOrder的原因是类外面传参传不了私有的_root,所以采用多套一层的方法。
//中序遍历
void _InOrder(Node* _root)
{
if (_root == nullptr)
{
return;
}
_InOrder(_root->_left);
std::cout << _root->_key << " ";
_InOrder(_root->_right);
}
void InOrder()//因为外部取不到_root,所以这里套了一层调用函数
{
_InOrder(_root);
std::cout << std::endl;
}
四、二叉搜索树的查找
1、查找的非递归写法
bool Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
cur = cur->_right;
}
else if (cur->_key > key)
{
cur = cur->_left;
}
else//说明找到了
return true;
}
return false;
}
2、查找的递归写法
Node* _FindR(Node* root,const K& key)
{
if (root == nullptr)
return nullptr;
if (root->_key < key)
{
return _FindR(root->_right, key);
}
else if (root->_key > key)
{
return _FindR(root->_left, key);
}
else
return root;
}
bool FindR(const K& key)
{
return _FindR(_root, key) == nullptr ? false : true;
}
五、二叉搜索树的插入
二叉搜索树的插入需要考虑插入后,需要维持二叉搜索树的形态。
1、插入的非递归写法
bool Insert(const K& key)
{
if (_root == nullptr)
{
_root = new Node(key);//BSTreeNode对象中存放key值,构造一个二叉搜索树节点
}
else
{
Node* parent = nullptr;
Node* cur = _root;
//cur一直走,走到要插入的位置
while (cur)
{
parent = cur;
if (cur->_key < key)
{
cur = cur->_right;
}
else if (cur->_key > key)
{
cur = cur->_left;
}
else//说明数字重复,插入失败
return false;
}
cur = new Node(key);
//判断插入节点放在parent节点的左子树还是右子树
if (parent->_key < key)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
}
return true;
}
1、如果根是空,插入的节点就是新的根;
2、如果根不为空,就先根据二叉搜索树的性质找到该节点要插入的位置,如果路上遇到相同的数,插入失败;
&nb