数学建模神经网络应用,构建神经网络模型方法

数学模型的建立与求解

8.3.2.1数学模型的求解本次研究采用地下水数值模拟软件ProcessingModflow,利用美国地质调查局所开发的三维有限差分地下水流模型Modflow(ModularThree-dimensionalFinite-differenceGround-waterFlowModle,模块化三维有限差分地下水流动模型)和IBS(InterbedstoragePackage,夹层储水程序包)软件包进行模拟求解。

ProcessingModflow是由Wen-HsingChiang和WolfgangKinzelbach等在以Modflow为基础研制开发的模拟地下水运动和溶质运移的计算软件,能够模拟由于抽取地下水引起的含水层的压缩量,由Interbed-storagePackage(IBS)来实现[47]。

利用该模块建立的地面沉降模拟模型,与地下水流模型共享一个主程序,二者在时间、空间离散情况方面完全一致,所以地下水开采模型的任何一次水位变化,都会反映到地面沉降模型中。

地面沉降模型所需参数的形式,也必须与地下水流模型相匹配。地面沉降模拟模型要求输入前期固结水头、初始沉降量、地面沉降观测站的位置、弹性释水系数和非弹性释水系数的初始值,然后迭代求解。

通过对各观测站地面沉降量计算值序列与实测值序列的对比,调整参数值,最终达到计算值与实测值的最佳拟合,以求得弹性释水系数、非弹性释水系数两个参数[48]。

前期固结水头是一个重要的指标,其是针对前期固结应力而言,代表着黏性土层在地质历史过程中迄今所受的最大有效应力,它是衡量一个地区某一土层固结状态的尺度,而固结状态又是判断土层在抽水条件下产生地面沉降及其大小的重要条件。

8.3.2.2时空离散根据获得资料的情况及本次工作的目的,以1987年作为1月水位分布作为模型模拟的初始条件,时段跨度为1987年1月至2004年12月,为期18年,计算步长为6个月,共计36个计算时段。

研究区采用矩形四棱柱(上、下两平面不一定平行)划分,垂向上共剖分了5个单元层(表8.4),6个结点层;平面上结点为100×100个,共计结点50000个(图8.15、8.16)。

表8.4计算单元层、结点层与含水岩组对应表图8.15研究区立体剖分示意图在地下水集中开采区,为了提高计算精度,以实际的井点为基础,进一步增加结点,使剖分加密,外围剖分单元较大。

在垂向上剖分的5个计算单元层尽量对应于(自上而下)含水层组岩性的变化。在资料缺乏区或一些钻孔中某些地质单元层缺失的地区,为了保证自动剖分与结点单元编号的连续性,在参数分区时予以区分。

谷歌人工智能写作项目:神经网络伪原创

伤寒、副伤寒流行预测模型(BP神经网络)的建立

由于目前研究的各种数学模型或多或少存在使用条件的局限性,或使用方法的复杂性等问题,预测效果均不十分理想,距离实际应用仍有较大差距好文案

NNT是Matlab中较为重要的一个工具箱,在实际应用中,BP网络用的最广泛。

神经网络具有综合能力强,对数据的要求不高,适时学习等突出优点,其操作简便,节省时间,网络初学者即使不了解其算法的本质,也可以直接应用功能丰富的函数来实现自己的目的。

因此,易于被基层单位预防工作者掌握和应用。

以下几个问题是建立理想的因素与疾病之间的神经网络模型的关键:(1)资料选取应尽可能地选取所研究地区系统连续的因素与疾病资料,最好包括有疾病高发年和疾病低发年的数据。

在收集影响因素时,要抓住主要影响伤寒、副伤寒的发病因素。

(2)疾病发病率分级神经网络预测法是按发病率高低来进行预测,在定义发病率等级时,要结合专业知识及当地情况而定,并根据网络学习训练效果而适时调整,以使网络学习训练达到最佳效果。

(3)资料处理问题在实践中发现,资料的特征往往很大程度地影响网络学习和训练的稳定性,因此,数据的应用、纳入、排出问题有待于进一步研究。

6.3.1人工神经网络的基本原理人工神经网络(ANN)是近年来发展起来的十分热门的交叉学科,它涉及生物、电子、计算机、数学和物理等学科,有着广泛的应用领域。

人工神经网络是一种自适应的高度非线性动力系统,在网络计算的基础上,经过多次重复组合,能够完成多维空间的映射任务。

神经网络通过内部连接的自组织结构,具有对数据的高度自适应能力,由计算机直接从实例中学习获取知识,探求解决问题的方法,自动建立起复杂系统的控制规律及其认知模型。

人工神经网络就其结构而言,一般包括输入层、隐含层和输出层,不同的神经网络可以有不同的隐含层数,但他们都只有一层输入和一层输出。

神经网络的各层又由不同数目的神经元组成,各层神经元数目随解决问题的不同而有不同的神经元个数。

6.3.2BP神经网络模型BP网络是在1985年由PDP小组提出的反向传播算法的基础上发展起来的,是一种多层次反馈型网络(图6.17),它在输入和输出之间采用多层映射方式,网络按层排列,只有相邻层的节点直接相互连接,传递之间信息。

在正向传播中,输入信息从输入层经隐含层逐层处理,并传向输出层,每层神经元的状态只影响下一层神经元的状态。

如果输出层不能得到期望的输出结果,则转入反向传播,将误差信号沿原来的连同通路返回,通过修改各层神经元的权值,使误差信号最小。

BP网络的学习算法步骤如下(图6.18):图6.17BP神经网络示意图图6.18BP算法流程图第一步:设置初始参数ω和θ,(ω为初始权重,θ为临界值,均随机设为较小的数)。

第二步:将已知的样本加到网络上,利用下式可算出他们的输出值yi,其值为岩溶地区地下水与环境的特殊性研究式中:xi为该节点的输入;ωij为从I到j的联接权;θj为临界值;yj为实际算出的输出数据。

第三步:将已知输出数据与上面算出的输出数据之差(dj-yj)调整权系数ω,调整量为ΔWij=ηδjxj式中:η为比例系数;xj为在隐节点为网络输入,在输出点则为下层(隐)节点的输出(j=1,2…,n);dj为已知的输出数据(学习样本训练数据);δj为一个与输出偏差相关的值,对于输出节点来说有δj=ηj(1-yj)(dj-yj)对于隐节点来说,由于它的输出无法进行比较,所以经过反向逐层计算有岩溶地区地下水与环境的特殊性研究其中k指要把上层(输出层)节点取遍。

误差δj是从输出层反向逐层计算的。各神经元的权值调整后为ωij(t)=ωij(t-1)+Vωij式中:t为学习次数。

这个算法是一个迭代过程,每一轮将各W值调整一遍,这样一直迭代下去,知道输出误差小于某一允许值为止,这样一个好的网络就训练成功了,BP算法从本质上讲是把一组样本的输入输出问题变为一个非线性优化问题,它使用了优化技术中最普遍的一种梯度下降算法,用迭代运算求解权值相当于学习记忆问题。

6.3.3BP神经网络模型在伤寒、副伤寒流行与传播预测中的应用伤寒、副伤寒的传播与流行同环境之间有着一定的联系。

根据桂林市1990年以来乡镇为单位的伤寒、副伤寒疫情资料,伤寒、副伤寒疫源地资料,结合现有资源与环境背景资料(桂林市行政区划、土壤、气候等)和社会经济资料(经济、人口、生活习惯等统计资料)建立人工神经网络数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值