用卷积神经网络处理 “图” 结构数据应该怎么办
。
卷积神经网络有以下几种应用可供研究:1、基于卷积网络的形状识别物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。
2、基于卷积网络的人脸检测卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。
它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。
3、文字识别系统在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。
然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。
谷歌人工智能写作项目:小发猫
如何更好的理解分析深度卷积神经网络
作者:杨延生链接:来源:知乎著作权归作者所有,转载请联系作者获得授权神经网络python应用案例,基于python的神经网络。"深度学习"是为了让层数较多的多层神经网络可以训练,能够work而演化出来的一系列的新的结构和新的方法。
新的网络结构中最著名的就是CNN,它解决了传统较深的网络参数太多,很难训练的问题,使用了逗局部感受野地和逗权植共享地的概念,大大减少了网络参数的数量。
关键是这种结构确实很符合视觉类任务在人脑上的工作原理。新的结构还包括了:LSTM,ResNet等。
新的方法就多了:新的激活函数:ReLU,新的权重初始化方法(逐层初始化,XAVIER等),新的损失函数,新的防止过拟合方法(Dropout,BN等)。
这些方面主要都是为了解决传统的多层神经网络的一些不足:梯度消失,过拟合等。
----------------------下面是原答案------------------------从广义上说深度学习的网络结构也是多层神经网络的一种。
传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。
而深度学习中最著名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。
具体操作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。
输入层-卷积层-降维层-卷积层-降维层--....--隐藏层-输出层简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是信号->特征->值。
特征是由网络自己选择。
卷积神经网络主要做什么用的?
卷积网络的特点主要是卷积核参数共享,池化操作。
参数共享的话的话是因为像图片等结构化的数据在不同的区域可能会存在相同的特征,那么就可以把卷积核作为detector,每一层detect不同的特征,但是同层的核是在图片的不同地方找相同的特征。
然后把底层的特征组合传给后层,再在后层对特征整合(一般深度网络是说不清楚后面的网络层得到了什么特征的)。而池化主要是因为在某些任务中降采样并不会影响结果。
所以可以大大减少参数量,另外,池化后在之前同样大小的区域就可以包含更多的信息了。综上,所有有这种特征的数据都可以用卷积网络来处理。
有卷积做视频的,有卷积做文本处理的(当然这两者由于是序列信号,天然更适合用lstm处理)另外,卷积网络只是个工具,看你怎么使用它,有必要的话你可以随意组合池化和卷积的顺序,可以改变网络结构来达到自己所需目的的,不必太被既定框架束缚。