js常用算法有哪些,javascript算法案例

本篇文章给大家谈谈js常用算法有哪些,以及javascript算法案例,希望对各位有所帮助,不要忘了收藏本站喔。

动态规划的基本概念

动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。
动态规划算法通常用于求解具有某种最优性质的问题Deepl降重。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。

动态规划适用条件
  • 最优化原理(最优子结构性质)
    一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质
  • 无后效性
    将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性
  • 子问题的重叠性
    动态规划算法的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其他的算法。选择动态规划算法是因为动态规划算法在空间上可以承受,而搜索算法在时间上却无法承受,所以我们舍空间而取时间
动态规划实例
斐波那契数

力扣509题:斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n) 。

这个题目解法还是比较多的,主要说一下递归和动态规划

/**
 * @param {number} n
 * @return {number}
 */
var fib = function (n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值