Machine Learning
文章平均质量分 80
MyProgramingLife
这个作者很懒,什么都没留下…
展开
-
(-)朴素贝叶斯学习(1)-机器学习中熵的理解
在学习NBC时,涉及te原创 2014-10-17 22:44:21 · 1208 阅读 · 0 评论 -
线性回归(linear regression)
一、似然估计我们要做的是对一些数据进行参数拟合, 然后进行预测的过程。 在这个过程谁都想要得到最好的参数,并且能够抗干扰性强一些,因此这里就要考虑各种求参数的方法了。 对于线性回归,其一般形式为 一般都会有截距项w0, 因此在进行估计的时候,我们都会对数据x , 在首列添加1. 进而估计参数w0. 拟合毕竟是估计, 总要存在残差的,原创 2015-01-25 16:34:43 · 2208 阅读 · 1 评论 -
机器学习稀疏 L1正则解法- LARS算法简介
一、 解法理解:比如向前回归,就是先选择和响应最相关的变量,进行最小二乘回归。 然后在这个模型的基础上,再选择和此时残差相关度最高的(也就是相关度次高)的变量,加入模型重新最小二乘回归。之后再如法继续,直到在某些度量模型的最优性准则之下达到最优,从而选取一个最优的变量子集进行回归分析,得到的模型是相比原模型更加简便,更易于解释的。这种方法,牺牲了模型准确性(预测有偏),但是提高了模型的精确度(转载 2015-01-23 16:36:14 · 1641 阅读 · 0 评论 -
机器学习稀疏之L1正则化
一、L1正则化在L0 正则化中,通常我们有很多特征时, 这样在计算后验形式p(r|D) 有很大的复杂度。即使利用贪心算法,很容易陷入局部拟合情况。其中一部分原因是因为 rj 特征是离散形式的, 这样造成目标函数的不光滑, 。 在优化领域中,通常的做法是对于离散的约束,我们通过松弛的方法来将其变为连续的约束。 我们可以在spike-and-slab 尖峰与平波模型中,通过在wj =0,原创 2015-01-22 10:21:35 · 7698 阅读 · 0 评论 -
机器学习稀疏之L0正则化
一 . L0 正则化在我们进行后验表示的时候,我们对 rj = 1, 表示第j 个特征与此后验是相关的, 其中后验表达为 图片1其中f(r) 为花费函数, f(r) = -[logp(D|r)+ logp(r)]例如假如有N = 20 , D = 10,进行线性回归模型, 其中数据和噪声为正太分布的, 图片2, 我们一般会要 K 稀疏,表示稀疏的程度。 则在K = 5, 有5个w原创 2015-01-17 22:19:22 · 4582 阅读 · 0 评论 -
(二) linear discriminant analysis- part I
(一) 基础了解产生式分类器对于算法模型, 我们学习其模型形式为: , 在给定x 时学习其条件分布y, 即算法尝试去直接学习由输入X到标签{0, 1}的映射关系,这是discriminative learning algorithms举个栗子:logistic regression (回头讲,重新再看)若我们学习模型为: (和 ),即如果y 表明0 是原创 2014-12-12 09:18:43 · 927 阅读 · 0 评论 -
逻辑回归(logistic regression)
一、 数学上的逻辑回归前面提到,逻辑回归是判别分析方法来分类的,即 通过给定的数据x, 来直接得到其后验概率。且 它 得到的是线性分类边界。回顾在贝叶斯准则中, 利用0-1损失进行分类时, 我们做法是 以最大的后验概率 的类 k, 来作为依据。 从而 第k 类 和 第 l 类的分类边界通过 使其概率相等来决定: 即 样本 x 在 第k 类和第l 类有相原创 2015-01-29 20:21:50 · 1274 阅读 · 0 评论 -
(二)Linear Discriminant Analysis - Part II
(一)正则化的引入(Regularized LDA)在利用线性判别分析进行分类时,在进行协方差估计是得到 ,这个协方差的估计是一个有偏估计(biased estimates)。因为其协方差是 正定的, 因此可以进行特征值分解 图片2, 其逆相应为: 我们利用协方差矩阵的逆,来进行分类判别,得到其判别得分函数为可以看到,判别得分对于很小的特征值原创 2014-12-20 13:19:46 · 1333 阅读 · 0 评论 -
(一)朴素贝叶斯学习(2)- binary feature
朴素贝叶斯二值模型, 从一步步的推导 ,到实现程序, 以及后续的一些问题的考虑, 如 logsumexp 和 互信息 的特征选择。 在后续有对MAP 进行了理解, 以及后续的学习总结。原创 2014-12-02 22:16:04 · 1329 阅读 · 0 评论 -
统计分析:Linear mixed-effects models
Linear mixed-effects models原创 2015-07-28 23:02:47 · 13186 阅读 · 0 评论